Role of Arg-166 in Yeast Cytochrome c_1^*

Received for publication, January 19, 2001

Published, JBC Papers in Press, February 26, 2001, DOI 10.1074/jbc.M100550200

Zulfiqar Ahmad[‡] and Fred Sherman[§]

From the Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642

A systematic screen for dominant-negative mutations of the CYT1 gene, which encodes cytochrome c_1 , revealed seven mutants after testing $\sim 10^4$ Saccharomyces cerevisiae strains transformed with a library of mutagenized multicopy plasmids. DNA sequence analysis revealed multiple nucleotide substitutions with six of the seven altered Cyt1p having a common R166G replacement, either by itself or accompanied with other amino acid replacements. A single R166G replacement produced by site-directed mutagenesis demonstrated that this change produced a nearly nonfunctional cytochrome c_1 , with diminished growth on glycerol medium and diminished respiration but with the normal or near normal level of cytochrome c_1 having an attached heme group. In contrast, R166K, R166M, or R166L replacements resulted in normal or near normal function. Arg-166 is conserved in all cytochromes c_1 and lies on the surface of Cyt1p in close proximity to the heme group but does not seem to interact directly with any of the physiological partners of the cytochrome bc_1 complex. Thus, the large size of the side chain at position 166 is critical for the function of cytochrome c_1 but not for its assembly in the cytochrome bc_1 complex.

The cytochrome bc_1 complex, also known as complex III of the respiratory chain or ubiquinol:cytochrome c oxidoreductase, is an oligomeric complex found in the inner mitochondrial membrane of eukaryotes and in the plasma membrane of bacteria (1-4). This complex transfers electrons from ubiquinol to cytochrome c and couples this transfer to a proton gradient across the inner mitochondrial or bacterial plasma membrane by a mechanism known as the proton motive Q cycle (2, 5–7). The prokaryotic and eukaryotic cytochrome bc_1 complexes contain three essential catalytic subunits having the following characteristic prosthetic groups: cytochrome b with two b-type hemes; cytochrome c_1 with a c-type heme; and the so-called Rieske protein that contains a high potential [2Fe-2S] cluster.

In addition to the three catalytic subunits, mitochondrial cytochrome bc_1 complexes from vertebrates (8) and the yeast *Saccharomyces cerevisiae* (9, 10) contain eight and seven additional subunits, respectively. X-ray crystallographic atomic structures have been determined for the soluble fragment of

the Rieske protein at 1.5-Å resolution (11) and for entire mitochondrial cytochrome bc_1 complexes from bovine, chicken (12-14), and S. cerevisiae (15) at 2–3-Å resolution. The cytochrome bc_1 complexes are dimers with each monomer of the yeast complex consisting of the following 10 protein subunits (with the orthologous bovine subunits or synonyms shown in parentheses): Cyt1p (cytochrome c_1); COB (cytochrome b); Rip1p (ISP, Rieske protein); Cor1p (Core 1, SU1); Qcr2p (Core 2, SU2); Qcr6p (SU8); Qcr7p (SU6); Qcr8p (SU7); Qcr9p (SU10); and Qcr10p (SU11). In addition, the subunit SU9 is present in the vertebrate but not in the yeast cytochrome bc_1 complex. Furthermore, the protein prepared for determining the atomic structure of the yeast complex lacked Qcr10p (15). (The overall structure and components of the bovine cytochrome bc_1 complex are presented in Fig. 1.) SU11 of the bovine complex, orthologous to Qcr10p, forms a transmembrane helix that is bound on the outside of the complex to the helices of the Rieske protein and SU10 (Qcr9p) (14). Removal of SU10 did not affect enzymatic activity (8), but it may be important for the correct assembly of the complex (10). The similar overall structure of the yeast compared with the vertebrate complexes suggests that Qcr9p is associated with the complex in the same way (15). Furthermore, the relative positions and orientations of heme groups and the distances between the iron positions indicate that the yeast and vertebrate complexes are essentially the same, although the exact position, length, and conformation of connecting loops varied (15).

Cytochrome c_1 is responsible directly for the electron transfer reaction with cytochrome *c* by catalyzing the oxidation of ubiquinol and reduction of cytochrome *c* (16, 17). Like all other physiological partners, cytochromes *c* and c_1 interact with each other through electrostatic forces (18).

Although cytochrome c_1 is a mitochondrial protein, it is encoded by a nuclear gene, *CYT1*, translated in the cytosol, and subsequently imported in mitochondria, a process involving cleavage of a leader sequence (19, 20). In yeast, the cleavage of a 61-amino acid amino-terminal region from the 309-amino acid-long precursor results in a 248-amino acid-long mature form.

We have undertaken a genetic investigation of the functional requirements of amino acid residues of yeast cytochrome c_1 and of possible critical interactions between cytochromes c_1 and c. Although mutational analysis of cytochromes c_1 from yeast (17, 21–23)¹ and *Rhodobacter sphaeroides* and *Rhodobacter capsulatus* (7, 24–27) has been used in several studies, we have elected to isolate and characterize dominant-negative mutants. The characterization of altered cytochromes c_1 generated by "random" mutagenesis may reveal functional requirements that are difficult to predict even with a detailed knowledge of the structure of the protein. However, the vast majority of nonfunctional proteins generated by random mutagenesis are

^{*} This work was supported by National Science Foundation Grant 130-6726 and National Institutes of Health Grant R01 GM12702. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[‡] On leave from: Dept. of Biochemistry, Hamdard University, Hamdard Nagar, New Delhi 10062, India.

[§] To whom correspondence should be addressed: Dept. of Biochemistry and Biophysics, P. O. Box 712, University of Rochester Medical School, Rochester, NY 14642. Tel.: 716-275-6647; Fax: 716-275-6007; E-mail: Fred_Sherman@urmc.rochester.edu.

 $^{^1\,\}mathrm{S.}$ L. Hatch, D. A. Pearce, F. Sherman, and G. McLendon, unpublished result.

FIG. 1. The bovine cytochrome bc_1 complex (14) shown in two orientations (A and B) and the position of Arg-166 (R166) (C) and R166G (D) in cytochrome c_1 . The three-dimensional structure of cytochrome bc_1 complex from S. cerevisiae has been published (15), but the coordinates will not be deposited until May 12, 2001 (1EZV, Protein Data Bank). We therefore have used the related bovine complex to depict the position of Arg-166 relative to the heme group and other components of the complex. Subunit 11 is not found in the yeast cytochrome bc_1 complex, and subunit 10 was not in the preparation that was used to determine the atomic structure of the yeast complex (15). The figure was generated with the molecular graphics program RasMol using the bovine cytochrome bc_1 coordinates (14).

defective for trivial reasons such as missense mutations that affect folding or assembly and nonsense mutations that produce truncated proteins. On the other hand, interesting nonfunctional but stable proteins can be detected by the dominant-negative genetic test (28). For example, if the overexpression of a *cyt1*-x mutation inhibits the function of the normal *CYT1*⁺ chromosomal gene, then the *cyt1*-x allele most likely encodes a nonfunctional cytochrome c_1 , which is competing with the normal form.

The systematic screen for dominant-negative mutations of the *CYT1* gene carried out in this study revealed that the R166G replacement caused a nearly nonfunctional cytochrome c_1 , with diminished growth on glycerol medium and diminished respiration but with the normal or near normal level of cytochrome c_1 having an attached heme group. Furthermore, the small size of the side chain was responsible for the defect because R166K, R166M, or R166L replacements resulted in normal or near normal function of cytochromes c_1 .

EXPERIMENTAL PROCEDURES

Numbering of Amino Acid Positions of Cytochrome c_1 —The amino acid positions of yeast cytochrome c_1 are assigned in this paper according to the full-length precursor having 309 amino acid residues. For example, Arg-166 of yeast cytochrome c_1 corresponds to Arg-102 of bovine cytochrome c_1 .

Media and General Methods—Standard YPD² (1% Bacto-yeast extract, 2% Bacto-peptone, and 2% glucose) and YPG (1% Bacto-yeast extract, 2% Bacto-peptone, and 2% (v/v) glycerol) and synthetic media for the growth of yeast and the normal cultivation and manipulation of yeast strains have been described by Sherman (29). SG – uracil and SD – uracil designate synthetic media containing 3% glycerol and 2% glucose, respectively, and 12 other supplements (29) without uracil.

The relative growth of the strains was estimated by inoculating a dilute suspension of cells on the surface of YPD and YPG plates, incubating the plates at 23, 30, and 37 °C, and examining the plates daily for up to 5 days.

Yeast cells were transformed by the lithium-acetate method (30).

Methods used in the construction of plasmids including restriction enzyme digests, separation of plasmid DNA and restriction fragments on agarose gels, ligation of DNA fragments, and the isolation of plasmid DNA are described by Maniatis *et al.* (31). *Escherichia coli* transformations were performed with the CaCl₂ method (32). The polymerase

TABLE I List of oligonucleotides

Oligonucleotide number	Sequence
OL.ZA01	GGGGGCTCGGGATCCATAGACTATCTAAGC
OL.ZA02	GGGGGCTCGGTCGACTTGGGCAACATTTTG
OL.ZA03	GGGGGCTCGGTCGACAAAAAGAAACGAAAC
OL.ZA04	GGTATCACCGCATCGACT
OL.ZA05	GGTATCACCGCATTGACTTTACTCTAT
OL.ZA06	GCCGAAGCTATGGCCGCAGCTGAACAC
OL.ZA07	GAACAGGCTGCAGGAGCTGCCAATCAA
OL.ZA08	AACGAACAGGCTGCATTGGCTGCCAATCAAGGT
OL.ZA09	AACGAACAGGCTGCAATGGCTGCCAATCAAGGT
OL.ZA10	AACGAACAGGCTGCAAAAGCTGCCAATCAAGGT
OL.ZA14	TCCATTGCAATGGCATAGGTCTTGTTTGATGAC

chain reaction (PCR) was carried out as described by Saiki et al. (33).

The enzymes used in this study, *Bam*HI, *Sal*I, DNA polymerases, polynucleotide kinase, etc., were purchased from either New England Biolabs, Amersham Pharmacia Biotech, or U. S. Biochemical Corp. The media constituents were obtained from Difco or Roche Molecular Biochemicals. All other chemicals used were from Sigma. Agarose was obtained from Roche Molecular Biochemicals.

DNA sequencing of segments containing *CYT1* was carried out with the oligonucleotides OL.ZA01–OL.ZA04 (Table I) using the ABI PRISM dye Terminator Cycle Sequencing Ready Reaction kit with AmpliTaq DNA polymerase (Big Dye).

Yeast Strains and Plasmids—The yeast strains used in this study along with their complete and partial genotypes are presented in Table II. The normal CYT1 strain B-7553 described by Dumont *et al.* (34) served as the parental strain for generating the cyt1- Δ ::TRP1 mutant B-9737 by the one-step gene replacement procedure. A 1.1-kilobase KpnI-SpeI segment containing the CYT1 gene in the plasmid pAB1192 was replaced with an 829-base pair KpnI-SpeI segment containing the TRP1 gene, resulting in a plasmid denoted pAB1193. B-7553 was transformed with a fragment from pAB1193 encompassing cyt1- Δ ::TRP1, and the desired disruptant was confirmed by PCR analysis.¹

The plasmids used in this study are listed in Table III, and some are described below.

Dominant-negative Mutants—A library of 1.5-kilobase CYT1 segments containing BamHI and SalI sites and random alterations was generated from pAB1097 by error-prone PCR with oligonucleotides OL.ZA01 and OL.ZA03. PCRs were carried out separately with 0.05, 0.10, 0.15, and 0.20 mM MnCl₂. All reactions contained the appropriate amounts of DNA (200–600 ng), MgCl₂ (1.5–6.0 mM), oligos (4.0–6.0 pmol), dNTPs, buffer, and AmpliTaq DNA polymerase. The libraries of PCR segments were inserted in pAB1198, and the resulting plasmids were amplified in XL1-Blue. The plasmid libraries, obtained by differ-

 $^{^2}$ The abbreviations used are: YPD, yeast extract peptone dextrose medium; YPG, yeast extract peptone glycerol medium; PCR, polymerase chain reaction.

Yeast Cytochrome c_1

TABLE II

Yeast strains

		10401 011 41110						
Strain number	Complete genotype							
B-7553 B-9737	MATa CYC1 cyc7-Δ::CYH2 cyh2 leu2–3,112 ura3–52 his3-Δ trp1–289 can1–100 CYT1 MATa CYC1 cyc7-Δ::CYH2 cyh2 leu2–3,112 ura3–52 his3-Δ trp1–289 can1–100 cyt1-Δ::TRP1							
Strain number	Parental strain	Plasmid number	Abbreviated genotype					
B-7553			CYT1 ura3					
B-12705	B-7553	pAB1198	CYT1 ura3 p[2 µ URA3]					
B-12707	B-7553	pAB2580	CYT1 ura3 p[2 µ URA3 CYT1]					
B-9737	B-7553	-	$cyt1-\Delta$ $ura3$					
B-13435	B-9737	pAB625	$cyt1-\Delta$ ura3 p[CEN6 URA3]					
B-13436	B-9737	pAB2306	$cyt1-\Delta$ ura3 p[CEN6 URA3 CYT1]					

TABLE III Description of plasmids

Plasmid number	Description
pAA625 pAB1097	Also designated pRS316; a 4.9-kb ^a CEN6 URA3 plasmid having BamHI and SalI cloning sites (35) Also designated pMH101; A 5.9-kb plasmid derived from pUC13 having a 3.2-kb BamHI-SalI segment with CYT1 (21)
pAB1198	Also designated YEp436; a 13.3-kb 2 μ plasmid having LEU2-d and URA3 markers (36)
pAB2306	pAA625 (<i>CEN6 URA3</i>) with a 3.2-kb segment having <i>CYT1</i> inserted at <i>Bam</i> HI and <i>Sal</i> I cloning sites; used for generating site-directed mutants
pAB2580	pAB1198 (2 μ URA3) having a PCR-generated 1.5-kb segment with CYT1 inserted at BamHI and SalI cloning sites; used for generating dominant-negative mutants
pAB2657-pAB2663,	Dominant-negative mutants (Table V)
pAB2665–pAB2672,	Site-directed mutants (Table VI)
a 1 1 - 1 - 1 - 1	

^a kb, kilobase.

TABLE IV Growth of dominant-negative (B-13412–B-13418) and site-directed (B-13445–B-13452) mutants

Strain	YPD			YPG			SD – uracil			SG – uracil		
number	$22 \ ^{\circ}\mathrm{C}$	30 °C	$37 \ ^{\circ}\mathrm{C}$	$22 \ ^{\circ}\mathrm{C}$	30 °C	$37 \ ^{\circ}\mathrm{C}$	$22 \ ^{\circ}\mathrm{C}$	30 °C	37 °C	$22 \ ^{\circ}\mathrm{C}$	30 °C	37 °C
B-7553	++++	++++	++++	+++	+++	+++	0	0	0	0	0	0
B-12705	++++	++++	++++	+ + +	+++	+++	++++	++++	++++	++++	++++	++++
B-12707	++++	++++	++++	+ + +	+++	+++	++++	++++	++++	++++	++++	++++
B-13412	++++	++++	++++	+	++	++	++++	++++	++++	0	0	0
B-13413	++++	++++	++++	+	++	++	++++	++++	++++	<u>+</u>	<u>+</u>	<u>+</u>
B-13414	++++	++++	++++	+	++	++	++++	++++	++++	<u>+</u>	<u>+</u>	<u>+</u>
B-13415	++++	++++	++++	+	+	++	++++	++++	++++	<u>+</u>	<u>+</u>	0
B-13416	++++	++++	++++	++	++	++	++++	++++	++++	<u>+</u>	<u>+</u>	0
B-13417	++++	++++	++++	+	+	++	++++	++++	++++	<u>+</u>	+	<u>+</u>
B-13418	++++	++++	++++	+	+	+	++++	++++	++++	0	0	0
B-9737	++++	++++	++++	0	0	0	0	0	0	0	0	0
B-13435	++++	++++	++++	0	0	0	++++	++++	++++	0	0	0
B-13436	++++	++++	++++	++	++	++	++++	++++	+ + + +	++++	++++	++++
B-13445	++++	++++	++++	<u>+</u>	<u>+</u>	<u>+</u>	++++	++++	++++	0	0	0
B-13446	++++	++++	++++	++	++	++	++++	++++	++++	+++	++++	++++
B-13447	++++	++++	++++	++	++	++	++++	++++	+ + + +	++++	++++	++++
B-13448	++++	++++	++++	++	++	++	++++	++++	+ + + +	+++	+++	+++
B-13449	++++	++++	++++	++	++	++	++++	++++	+ + + +	+++	+++	++++
B-13450	++++	++++	++++	+++	++	++	++++	++++	++++	++++	++++	++++
B-13451	++++	++++	++++	++	++	++	++++	++++	+ + + +	+++	+++	+++
B-13452	++++	++++	++++	+	+	+	++++	++++	++++	<u>+</u>	<u>+</u>	<u>+</u>

ent error-prone PCR conditions, were pooled and used to transform the B-7553 strain; the resulting transformants were plated on SD – uracil plates. Approximately 104 colonies from the SD – uracil plates were replica-plated on SG – uracil, SD – uracil, YPG, and YPD plates for the detection of dominant-negative mutants. A transformant was considered to be a dominant-negative mutant if it exhibited diminished growth on SG – uracil, if the corresponding Ura⁻ strain lacking the plasmid had normal growth on YPG, and if reintroduction of the plasmid in pAB1198 again resulted in a transformant with diminished growth on SG – uracil medium.

Oligonucleotide-directed Mutagenesis—Oligonucleotide-directed mutagenesis was carried out by the procedure described by Kunkel et al. (37) using the plasmid pAB2306 (Table III), E. coli strain CJ236 (dut1 ung1 thi1 relA1/pCJ105[Cm^R]) (38), and the oligonucleotides OL.Z05— OL.Z14 (Table I). The E. coli strain XL1-Blue (supE44 hsd17 recA1 endA1 gyrA46 thi1 relA1 lac-) was used for the amplification and storage of plasmids. The site-directed change was confirmed by DNA sequencing of the *CYT1* region.

Low Temperature Spectroscopic and Spectrophotometric Analysis of Intact Cells—The yeast strains were grown on the surface of YP1%S (1% Bacto-yeast extract, 2% Bacto-peptone, and 1% sucrose) plates at 23 °C for 4 days, 30 °C for 3 days, or 37 °C for 2 days, which are slightly modified conditions of our standard procedure (39). The levels of cytochromes aa_3 , b, c, and c_1 were estimated in intact cells at -196 °C by spectroscopic visual examination (40) and by absorbance recordings using an Aviv model 14 spectrophotometer as described by Hickey *et al.* (41).

Rates of Respiration—Oxygen uptake was measured polarographically with a commercially available Teflon-covered Clark electrode, the Yellow Stone Instruments oxygen monitor (Yellow Springs, OH), as described previously (42), using 3-ml solutions of 44 mM KH₂PO₄, 1 mM glucose, and various amounts of washed yeast cells obtained from cultures grown to late stationary phase in YPD medium. $[Q_{O_2}$ is expressed as microliters of oxygen consumed per hour per milligram of yeast, dry weight.

Strain and plasmid numbers								
	B-13412 pAB2657 cyt1–101	B-13413 pAB2658 cyt1–102	B-13414 pAB2659 cyt1–103	B-13415 pAB2660 cyt1–104	B-13416 pAB2661 cyt1–105	B-13417 pAB2662 cyt1–106	B-13418 pAB2663 cty1–107	
	L36L $CTC \rightarrow CTA$ G45G $GGT \rightarrow GGA$ S49L $TCG \rightarrow TTG$ 556S $TCC \rightarrow TCA$ T63A $ACC \rightarrow GCC$ R166G $AGA \rightarrow GGA$ A168A $GCC \rightarrow GCT$	A22A GCA \rightarrow GCT L36L CTC \rightarrow CTA S56S TCC \rightarrow TCA T63A ACC \rightarrow GCC R166G AGA \rightarrow GGA A168A GCC \rightarrow GCT	A22A GCA \rightarrow GCT L36L CTC \rightarrow CTA S56S TCC \rightarrow TCA T63A ACC \rightarrow GCC R166G AGA \rightarrow GGA A168A GCC \rightarrow GCT	G45G GGT→GGA R166G AGA→GGA A168A GCC→GCT	L36L CTC→CTA R166G AGA→GGA A168A GCC→GCT	L36L $CTC \rightarrow CTA$ S56S $TCC \rightarrow TCA$ R166G AGA \rightarrow GGA A168A $GCC \rightarrow GCT$ G221G $GGT \rightarrow GGC$	T33T ACT \rightarrow ACC L36L CTC \rightarrow CTA V41V GTT \rightarrow GTC N79D AAT \rightarrow GAT A103S GCC \rightarrow TCC S106T TCT \rightarrow ACT G157S GGC \rightarrow ACT G157S GGC \rightarrow AGC A167A GCT \rightarrow GCC A168A GCC \rightarrow GCT L195M TTG \rightarrow ATG M225K ATG \rightarrow AAG R227End AAG \rightarrow TAG E237E GAA \rightarrow GAG T240S ACC \rightarrow TCC	

RESULTS AND DISCUSSION

Dominant-negative Mutants—We undertook an extensive screen for dominant-negative mutations of the CYTI gene that encodes cytochrome c_1 with the aim of identifying amino acid residues that are critical for function but not for stability or incorporation into the cytochrome bc_1 complex. For example, residues that are on the surface of the complex and are required for interaction with their physiological partners would be expected to be revealed with dominant-negative mutations. Because such altered cytochromes c_1 are expected to be stable, they should be particularly amenable to biochemical studies.

In this study, we have used a library of multicopy plasmids containing a *CYT1* segment that was mutated randomly by error-prone PCR. The plasmids, which are derivatives of pAB1198 (Table III), are maintained at a high copy number in the strain B-7553 (Table II) because of the *URA3* marker and the 2 μ origin of replication. In addition, the *LEU2-d* markers can be used to produce an even higher copy number on medium lacking leucine.

The screen is based on the lack of utilizing a nonfermentable carbon source, glycerol, because of competition of an altered nonfunctional form for the wild-type cytochrome c_1 . Because manifestation of dominant-negative mutations depends on the presence of the plasmid, the desired mutants can be differentiated conveniently from other glycerol-negative mutants such as commonly occurring ρ^- mutations.

Approximately 10^4 transformants containing the library of mutagenized plasmids were screened for diminished growth on synthetic medium lacking uracil in a plasmid-dependent manner. A total of 181 colonies with some degree of diminished growth was uncovered, but only 12 were almost completely negative. The *CYT1* region of seven of these was subjected to DNA sequencing. The seven strains were designated B-13412–B-13418; the corresponding plasmids were designated pAB2657–pAB2663; and the corresponding altered alleles were designated *cyt1-101–cyt1-107* (Tables IV and V). The growth of the strains under various conditions is presented in Table IV,

FIG. 2. Growth of the following strains on SG medium lacking uracil, demonstrating the dominant-negative effect of the R166G replacement: B-12705 (CYT1 ura3 p[2 μ URA3]), the CYT1 normal strain; B-13415 (CYT1 ura3 p[2 μ URA3 cyt1-104]), the R166G dominant-negative mutant; and B-13435 (cyt1- Δ ura3 p[CEN6 URA3]), a cyt1- Δ -deficient mutant.

and as an example, the growth of B-13415 on SG - uracil medium is presented in Fig. 2.

The sequences of the CYT1 region of the pAB2657-pAB2663 plasmids, presented in Table V, revealed multiple base pair substitutions with many of the changes common to more than one plasmid. The two plasmids pAB2658 and pAB2659 were identical, and all seven plasmids contained the neutral change A168A (GCC \rightarrow GCT). Two different sets (six each) of the seven plasmids contained the neutral change L36L (CTC \rightarrow CTA) and the radical change R166G (AGA \rightarrow GGA), respectively. The plasmid pAB2663 contained 14 base pair substitutions including the formation of a UAG nonsense codon at amino acid position 227. The multiple and common base pair substitutions suggest that the altered PCR products may be related clonally, a result that would be expected if the DNA fragments were derived from common molecules because of low amounts of starting material. Thus, it is unclear which if any of the multiple directed changes occurred independently.

TABLE VI Properties of mutants constructed by site-directed mutagenesis

Strain number	Plasmid	Allele	Oligonucleotide	Codon change	Amino acid changes	$\substack{\text{Cytochrome}\\c_1}$	Growth on glycerol medium	Q_{O_2}
								µl/mg
B-9737						0	0	
B-13435	pAB625	No insert				0	0	9.5
B-13436	pAB2306	CYT1		None	None	+	+	50.4
B-13445	pAB2665	cyt1–201	OL.Z07	$AGA \rightarrow GGA$	R166G	+	0	8.9
B-13446	pAB2666	cyt1-202	OL.Z08	$AGA \rightarrow TTG$	R166L	+	+	
B-13447	pAB2667	cyt1-203	OL.Z09	$AGA \rightarrow ATG$	R166M	+	+	
B-13448	pAB2668	cyt1-204	OL.Z10	$AGA \rightarrow AAA$	R166K	+	+	
B-13449	pAB2669	cyt1-205	OL.Z06	$ACC \rightarrow GCC$	T63A	+	+	
B-13450	pAB2670	cyt1–206	OL.Z05	TCG \rightarrow TTG	S49L	+	+	
B-13451	pAB2671	cyt1–207	OL.Z06, OL.Z05	TCG \rightarrow TTG, ACC \rightarrow GCC	S49L, T63A	+	+	
B-13452	pAB2672	cyt1–208	OL.Z14	AGA \rightarrow TAG	R227End	0	<u>+</u>	

FIG. 3. Growth of 1:10 serial dilution of the following strains on YPD and YPG: B-7553 (*CYT1 ura3*); B-9737 (*cyt1-* Δ *ura3*); B-13435 (*cyt1-* Δ *ura3* p[*CEN6 URA3 CYT1*]); B-13446 (*cyt1-* Δ *ura3* p[*CEN6 URA3 CYT1*]); B-13446 (*cyt1-* Δ *ura3* p[*CEN6 URA3 cyt1-201*] (R166G)); B-13446 (*cyt1-* Δ *ura3* p[*CEN6 URA3 cyt1-202*] (R166L)); B-13447 (*cyt1-* Δ *ura3* p[*CEN6 URA3 cyt1-203*] (R166M)); B-13448 (*cyt1-* Δ *ura3* p[*CEN6 URA3 cyt1-203*] (R166M)); B-13449 (*cyt1-* Δ *ura3* p[*CEN6 URA3 cyt1-205*] (T63A)); B-13452 (*cyt1-* Δ *ura3* p[*CEN6 URA3 cyt1-208*] (R227End)); and B-7553 (*CYT1 ura3*).

The results clearly established that at least the R166G replacement was responsible for the dominant-negative phenotype. This amino acid replacement occurred in six of the seven sequenced plasmids, pAB2657–pAB2662, and was the only amino acid change in the two plasmids pAB2660 and pAB2661. Furthermore, the only plasmid lacking the R166G replacement, pAB2663, contained the UAG nonsense mutation at amino acid position 227. The drastic nature of premature chain termination suggests that the R227End change in pAB2663 is responsible for the dominant-negative effect.

Site-directed Mutants—To confirm and extend these findings and to determine whether other replacements may confer a dominant-negative phenotype, the following changes were introduced in the single-copy CEN6 plasmid by oligonucleotidedirected mutagenesis (Table VI): R166G; R166M; R166L; R166K; S49L; T63A; S49L and T63A; and R227End. Strain B-9737 (cyt1- Δ ura3) was transformed with each of the plasmids, and the transformants, B-13445–B-13452, were examined for growth on a variety of media at various temperatures and for the levels of the cytochromes aa_3 , b, c_1 , and c. The growth of B-13445 (R166G) and B-13452 (R227End) was diminished greatly on YPG medium, and the growth of B-13446

FIG. 4. Low temperature (-196 °C) spectrophotometric recordings of intact cells of the following isogenic strains: A, B-7553, CYT1 (normal); B, B-13445, cyt1-201 (R166G); and C, B-9737, cyt1- Δ (deficient mutant). The α -peaks of cytochromes $a \cdot a_3$, b, c_1 , and c are located at 602.5, 558.5, 553.3, and 547.3 nm, respectively. The peak at ~575 nm in B-9737 (C) is caused by zinc protoporphyrin.

(R166L), B-13448 (R166K), B-13449 (T63A), and B-13451 (S49L, T63A) was diminished only slightly on SG – uracil medium (Tables IV and VI, Fig. 3). These results confirm that the R166G and R227End changes are responsible for the cytochrome c_1 defects and presumably for the dominant-negative phenotypes. Furthermore, the T63A replacement in pAB2657, pAB2658, and pAB2659 and the S49L replacement in pAB2657 are apparently innocuous. The detrimental effect of the R166G replacement was substantiated further from the diminished respiratory rate of strain B-13445, which was equivalent to the strain B-13435 lacking cytochrome c_1 (Table VI). Nevertheless, B-13445 (R166G) contained the nearly normal level of cytochrome c_1 as indicated by the α -peak in the low temperature (-196 °C) spectrophotometric recording (Fig. 4).

In contrast to the R166G replacement, the R166M, R166L, and R166K replacements at most only caused minor diminution of function as indicated by the normal or nearly normal level of growth on YPG medium (Table IV). This finding suggests that the large size but not the charge of the Arg-166 side chain is critical for maintaining the normal function of cytochrome c_1 .

Yeast Arg-166 (Vertebrate Arg-102)—The importance of the yeast Arg-166 (or vertebrate Arg-102) along with the adjacent

P. denitrifican	1 MTLRNASLTA	VAALTVALAG	GAVAQDASTA	PGTTAPAGSS	YHTNEAAPAA	ADTAPAAEAA	70 DEPAAEEAEA
N. crassa H. sapiens P. denitrifican	71 GEAEVTEEPA	ATETPAEEPA	ADEPAATEEP	DAEAEPAAEE	MA AQATTEEAPA	AAAASLRGVV EEPAAEEPAA	140 MLARTC LGPRGAGLPG EEPAEEPAAD
1 S. cerevisiae N. crassa S. tuberosum H. sapiens B. viridis R. capsulatus P. denitrifican Consensus	41 (1) MFSNLSK LRSTRTFASA RFITRGAAQR ARARGLLCSA APAEEAAAEE	RWAQRTLSKS KNGAFKFAKR NDSKLPSRND RPGQLPLRTP APAEPEAAAE	FYSTATGAAS SASTQSSGAA ALKHGLDG QAVALSSKSG EPAAEEPEAT	KSGKLTQKLV AESPLRLNIA LGSAGSKSFR LSRGRKVMLS EEEAPAEEAA	TAGVAAAGIT AAAATAVAAG ALAAIGAGVS ALGMLAAGGA MTIKLRFV AEEAPAEEVV dd	-ASTLLYADS -SIAWYYHLY -GLLSF -GLAVA -ASLALVFGL MKKLLISAVS EDEAAADHGD	210 LTMEAMTANE GFASAMTPAE ATLAYSDEAE LHSAVS-ASD AAASVPAQAS ALVLGSGAAL AAAQEAGDSH d.d.d.d.
S. cerevisiae N. crassa S. tuberosum H. sapiens B. viridis R. capsulatus P. denitrifican Consensus	211 HCLIAPAYAM EGLIATKYPM HCLECPNYPM LEVIIPSYPM CCDTPHLQSW ANSNVQDHAF AAATIEDISF	SHNGPFETFD PHEQWLKTFD SHRGLLSSYD SFACPFCQYD SFEGIFGKFD SFEGFFCKFD Sheg.ffD	HASIRRGYQV HQALRRGFQV HASTRRGFQV HTSIRRGFQV KAQLRRGFQV QAQLRRGFQV QHQLQRGFQV HallrRGFQV	YREVCAACHS YREVCASCHS YQQVCASCHS YRQVCASCHS FQNVCVSCHT YSEVCSTCHG YTEVCSACHG YTEVCSACHG Y #VCasCHS	DRVAWRTLV USRVPYRALV MSLISYRDLV MDFVAYRHLV LENGGFRNLP MKFVPIRTLS LRYVPLRTLA HN.R.LV	GVSHINE GTILDVE GVGYTEE GVCYTEE SRAAPNWPLD DDGGPQLDPT DEGGPQLPED Gd	280 EVRNMAEEFE FAKALAEFNE FTKAMAAEIF FAKELAEVE FVREVAAGLD OVRAYAANFD EVT. Aae.e
S. cerevisiae N. crassa S. tuberosum H. sapiens B. viridis R. capsulatus P. denitrifican Consensus	281 YD-DEPDEQG VD-DEPNDQG VV-DCPNDEC VQ-DCPNEDG VQVKDINDKC TIIDXDSGEE -ITDPETEED .d.png	NPKKRP EIEKRP EMFTRP EMFMRP DPMQRA RDRKETDMFP RPRVPTDHFP TP	CKLSDYIPGP GKLSDYLPDP CKLSDRFPQP CKLFDYFPKP PKLPDRIPSQ TRVCDGMGPD TVSGPGMGPD gKI.#p.p	YPNEQAARAA YKNDEAARFA YANEAAARFA YPNSEAARAA YANEAAARFT LSVMAKARAG LSLMAKARAG YMBAAARAG	NQGALPPDLS NNGALPPDLS NCGAYPPDLS NNGALPPDLS HNGAVPPDLS FSCPAGSCMN FHGPYGTGLS n.Ga.ppd4s	LIVKAR LIVKAR VINKAR VIVARA VIAKARTFQR QLFKGI QLFNGI	350 GFPWWVTD1F
S. cerevisiae N. crassa S. tuberosum H. sapiens B. viridis R. capsulatus P. denitrifican Consensus	351 HGCCDY HGCCDY HGCEDY TQYNENGVDY GCPEY GCPEY ngG.#Y	IFSLLTGYPD IFSLLTGYPD VFALLTGYRD VFSLLTGYCF IVALLSGYED IYRYVTGFPE IHAVLTGYDG FT.TICGY.d	EPPAGV-ALP EPPAGA-SVG -PPAGV-SIR -PPTGV-SLR -PPERF-KVP ENPACAPEGI EREEAGAVL CPPAG2	PGSNYNPYFP AGLNFNPYFP EGLHYNPYFP EGLYFNPYFP DGSFYNKYFP DGYYYNEVFQ YHNAAFA .gyNpyFp	VGGVPDTCKD	GG GG GQ 	420 SIAMARVIFD GIAMARVIYD AIAMPPIYT IIGMTPPIAD WAQMPPALFD WIQMAAPLSD .iaMad
S. cerevisiae N. crassa S. tuberosum H. sapiens B. viridis R. capsulatus P. denitrifican Consensus	421 DMVEYEDGTP GLVDYEDGTP GAVEYEDGIP DVLEFDDGTP GLVTYGDGTP DLVTYEDGTP DQVTYEDGTP d.v.¥eDGtP	ATTSOMAKDV ASTSOMAKDV ATTEAOMCKDV ATTMSOTAKDV BTOLOYSKDV ATVDOMCODV ATVDOMCODV ATVDOMATDV atOmakDV	TTFLNWCAEP VEFLNWAAEP VSFLSWAAEP CTFLRWASEP AAFLMWAAEP ASFLMWAAEP AAFLMWTAEP FL.WaaEP	EHDERKREGL EMDORKRMGM EMBERKLMCF EHDHRKRMGL TLDVRKRIGW KLVARKQMGL KMMDRKQVCF E.C.RKIMG.	KTVIIISSIY KVLVVTSVLF KWIFVISLAL KMLMMMALIV VVLGFIVIFT VAVVMIGLIS VSVIFIIVLA K	LI SIWVÄKFK AL SVYVÄRYK LQAAYYRRLR PI VYTIÄRHK GLLVATÄIVV VMLYLTNKRL ALLYLTNKKL 	490 WAGIKTRKFV WAWLKSRKIV WSVLKSRKLV WSVLKSRKLA WRPVKKGLA WAPYKRQKA WQPIKHPRKP WK.FK
S. cerevisiae N. crassa S. tuberosum H. sapiens P. denitrifican	491 FNPPKPRK YDPPKSPPPA LDVVN YRPPK E	TNLALPQQRA	512 KS				

FIG. 5. Amino acid sequence alignment of cytochromes c_1 from S. cerevisiae, Neurospora crassa, Solanium tuberosum (potato), Homo sapiens, Blastochloris viridis, Rhodobacter capsulatus, and Paracoccus denitrificans. Highly conserved residues are highlighted in black, where I designates I or V; L designates L or M; Y designates Y or F; and # designates N, D, Q, E, B, or Z. Moderately conserved residues are highlighted in gray. The residue positions are numbered starting with the P. denitrificans sequence. Thus, residue position 1 of S. cerevisiae corresponds to residue position 144 of P. denitrificans. The conserved Arg-166 of S. cerevisiae is denoted at position 308 (\mathbf{V}).

Ala-165 residue is reflected by the phylogenetic conservation of these residues in cytochrome c_1 from all species including higher and lower eukaryotes and prokaryotes. As shown in Fig. 5, of the almost 250 residues, Ala-165 and Arg-166 represent two of the 32 absolutely conserved residues in all cytochromes c_1 .

Insight into the function of Arg-166 is provided by considering its position in the cytochrome bc_1 complex and the proposed models of electron transfer. As shown in Fig. 1, Arg-166 is located on the surface of cytochrome c_1 in close proximity to the exposed pyrrole C corner of the heme group but not adjacent to any of the other components of the complex. The surface location of Arg-166 is consistent with proper assembly and stability of the altered R166G cytochrome c_1 . Zhang *et al.* (13) suggested that electron transfer into cytochrome c_1 occurs through the D propionate and out of cytochrome c_1 through the C corner of the heme to cytochrome c. On the other hand, in vitro protection and cross-linking experiments suggested that at least two different regions of cytochrome c_1 , encompassed by vertebrate positions 63–81 and 167–174, are folded together to form the cytochrome c binding site (43, 44). It remains to be seen if the R166G cytochrome c_1 still binds cytochrome c but is unable to transfer electrons. In this regard, an R166G replacement is not expected to disrupt the α -helical structure in this region, and it is unclear how R166G but not R166K, R166M, or R166L replacements could effect binding to cytochrome c.

Acknowledgments—We thank Thomas S. Cardillo for assistance in the low temperature spectrophotometric analysis and in the determination of respiration rates. We also thank Drs. David A. Pearce, Anaul Kabir, and Bogdan Polevoda for useful suggestions and discussions.

REFERENCES

- 1. Hatefi, Y. (1985) Annu. Rev. Biochem. 54, 1015-1069
- 2. Trumpower, B. L. (1990) Microbiol. Rev. 54, 101-129
- 3. Brandt, U., and Trumpower, B. L. (1994) CRC Crit. Rev. Biochem. 29, 165-197
- Berry, E. A., Mariana, G.-K., Huang, L., and Croft, A. R. (2000) Annu. Rev. Biochem. 69, 1005–1075
- 5. Mitchell, P. (1976) J. Theor. Biol. 62, 327-367
- 6. Crofts, A. R. (1985) in The Enzymes of Biological Membranes (Martonosi, A. N., ed.) Vol. 4, pp. 347-382, Plenum Publishing Corp., New York
- 7. Gennis, R. B., Barquera, B., Hacker, B., Van Doren, S. R., Arnaud, S., Crofts, A. R., Davidson, E., Gray, K. A., and Daldal, F. (1993) J. Bioenerg. Biomembr. 25, 195–209 8. Schägger, H., Link, T. A., Engel, W. D., and von Jagow, G. (1986) *Methods*
- Enzymol. 126, 224–237
- Brandt, U., Uribe, S. A. M. (1987) *Biochim. Biophys. Acta* 895, 205–239
 Brandt, U., Uribe, S., Schägger, H., and Trumpower, B. L. (1994) *J. Biol.*
- Chem. 269, 12947-12957 11. Iwata, S., Saynovits, M., Link, T. A., and Michel, H. (1996) Structure 4,
- 567-579 12. Xia, D., Yu, C. A., Kim, H., Xia, J. Z., Kachurin, A. M., Zhang, L., Yu, L., and
- Deisenhofer, J. (1997) Science **277**, 60–66 13. Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y. I., Kim, K. K., Hung, L. W.,
- Crofts, A. R., Berry, E. A., and Kim, S. H. (1998) Nature **392**, 677–684 14. Iwata, S., Lee, J. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link,
- T. A., Ramswamy, S., and Jap, B. K. (1998) Science 281, 64–71
 15. Hunte, C., Koepke, J., Lange, C., Rossmanith, T., and Michel, H. (2000)
- Structure 8, 669-684 16. Bosshard, H. R., Zurrer, M., Schagger, H., and von Jagow, G. (1979) Biochem.
- Biophys. Res. Commun. 89, 250–258 17. Nakai, M., Endo, T., Hase, T., Tanaka, Y., Trumpower, B. L., Ishiwatari, H.,
- Asada, A., Bogaki, M., and Matsubara, H. (1993) J. Biochem. (Tokyo) 114, 919-925
- 18. Koppenol, W. H., and Margoliash, E. (1982) J. Biol. Chem. 257, 4426-4437 19. van Loon, A. P., and Schatz, G. (1987) EMBO J. 6, 2441-2448
- 20. Arnold, I., Folsch, H., Neupert, W., and Stuart, R. A. (1998) J. Biol. Chem. 273, 1469 - 1476
- 21. Hase, T., Harabayashi, M., Kawai, K., and Matsubara, H. (1987) J. Biochem. (Tokyo) 102, 401-410
- 22. Nakai, M., Harabayashi, M., Hase, T., and Matsubara, H. (1989) J. Biochem. (Tokyo) 106, 181-187
- 23. Nakai, M., Ishiwatari, H., Asada, A., Bogaki, M., Kawai, K., Tanaka, Y., and

- Matsubara, H. (1990) J. Biochem. (Tokyo) 108, 798-803
- Konishi, K., Van Doren, S. R., Kramer, D. M., Crofts, A. R., and Gennis, R. B. (1991) J. Biol. Chem. 266, 14270–14276
- 25. Gray, K. A., Davidson, E., and Daldal, F. (1992) Biochemistry 31, 11864-11873 26. Darrouzet, E., Mandaci, S., Li, J., Qin, H., Knaff, D. B., and Daldal, F. (1999)
- Biochemistry 38, 7908-7917 27. Gao, F., Qin, H., Knaff, D. B., Zhang, L., Yu, L., Yu, C. A., Gray, K. A., Daldal,
- F., and Ondrias, M. R. (1999) Biochim. Biophys. Acta 1430, 203-213 28. Sherman, F. (1997) in The Encyclopedia of Molecular Biology and Molecular
- Medicine (Myers, R. A., ed) Vol. 6, pp. 302-325, VCH Publishers, Inc., New York
- 29. Sherman, F. (1991) Methods Enzymol. 194, 3–21
- 30. Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983) J. Bacteriol. 153, 163 - 168
- 31. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- 32. Cohen, S. N., Chang, A. C. Y., and Hsu, L. (1972) Proc. Natl. Acad. Sci. U. S. A. 69, 2110-2114
- 33. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1988) Science 239, 487-491
- 34. Dumont, M. E., Schlichter, J. B., Cardillo, T. S., Hayes, M. K., Bethlendy, G., and Sherman, F. (1993) Mol. Cell. Biol. 13, 6442-6451
- 35. Sikorski, R. S., and Hieter, P. (1989) Genetics 122, 19-27
- 36. Ma, H., Kunes, S., Schatz, P. J., and Botstein, D. (1987) Gene (Amst.) 58, 201 - 216
- 37. Kunkel, T. A., Bebenek, K., and McClary, J. (1991) Methods Enzymol. 204, 125 - 139
- 38. Kunkel, T. A., Roberts, J. D., and Zakour, R. A. (1987) Methods Enzymol. 154, 367-382
- 39. Sherman, F., Stewart, J. W., Jackson, M., Gilmore, R. A., and Parker, J. H. (1974) Genetics 77, 255-284
- 40. Sherman, F., and Slonimski, P. P. (1964) Biochim. Biophys. Acta 90, 1-15
- 41. Hickey, D. R., Jayaraman, K., Goodhue, C. T., Shah, J., Fingar, S. A. Clements, J. M., Hosokawa, Y., Tsunasawa, S., and Sherman, F. (1991) Gene (Amst.) 105, 73-81
- 42. Sherman, F., Fink, G. R., and Hicks, J. B. (1987) Methods in Yeast Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- 43. Broger, C., Salardi, S., and Azzi, A. (1983) Eur. J. Biochem. 131, 349-352
- 44. Stonehuerner, J., O'Brien, P., Geren, L., Millett, F., Steidl, J., Yu, L., and Yu, C. A. (1985) J. Biol. Chem. 260, 5392-5398