
Optical Spin Orientation



In semiconductors, non-equilibrium spin distributions can be accomplished
through optical excitation, exploiting selection rules for light-induced transitions
between spin states. To clarify the concept of creating spin polarization by
optical means, we make reference to a direct-gap III-V semiconductor, such as
GaAs. The band structure of these systems around the Γ point is sketched in
Figure 9.11. The band gap Eg separates the lowest conduction band, an electron
band with L = 0 from a valence band which originates from hole states with
L = 1. Spin-orbit coupling splits the latter into two subbands, characterized by
a total angular momentum quantum nembers J = 3

2 (the upper subband) and
J = 1

2 (the lower subband or split off band), and shifted with respect to each
other by the spin-orbit splitting ∆SO. In Figure 9.11, these three bands are
labelled according to the symmetry groups with which they transform as Γc

6,
Γv
8, and Γv

7, respectively. The upper valence subband divides into two inverted
parabolae with different curvature, reflecting different effective masses. These
correspond to substates with |mJ | = 1

2 versus those with |mJ | = 3
2 , associated

with a light hole and a heavy hole, respectively. Using light in the energy interval
Eg ≤ E < Eg +∆SO, one may induce selectively transitions from the light-hole
and heavy-hole subbands into the conduction band. Spin-orbit effects within
the latter, to be addressed later in this chapter, are immaterial for the present
argument.

Treating the interaction between light and matter within the dipole approx-
imation, and specifying the Hamiltonian as Ĥint ∼ x ·E, where the components
of the coordinate vector x reflect the symmetries of the atomic p wave functions
px, py, and pz. For the argument presented here, any constants defining Ĥint are
inessential since they do not affect the ratio of down- versus up spin excitation
probabilities. This ratio has the following form:

|⟨Γc
6 ↓ |x ·E|Γv

8⟩|2

|⟨Γc
6 ↑ |x ·E|Γv′

8 ⟩|2
, (1)

where Γc
6 ↓ (Γc

6 ↑) stand for the states | 12 ,−
1
2 ⟩ (|

1
2 ,

1
2 ⟩) of the S 1

2
conduction

band, and Γv
8,Γ

v′

8 denote states chosen from the set of the four S 3
2
valence band

wave functions, explicitly listed in Table 9.1. The key idea underlying optical
spin orientation consists in applying the selection rules valid for dipolar radi-
ation on the transition between the valence and the conduction band. Thus,
employing circularly polarized radiation with positive (σ+) or negative (σ−) he-
licity, one constrains the difference ∆MJ to +1 or -1, respectively, as illustrated
in Figure 9.12. Making use of Table 9.1 and recalling that Ĥint tranforms like
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Figure 1: Sketch of the band structure of a direct-gap III-V semiconductor
around the Γ point (k= 0). CB stands for the lowest conduction band, described
by a band wave function labeled as Γc

6. HH and LH denote heavy hole and light
hole subbands of the highest valence band, labeled Γv

8, and SO the split-off band
Γv
7.
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Figure 2: Scheme of the optical transitions from the heavy-hole and light-hole
valence subbands into the conduction band, as induced by circularly polarized
light, where σ+ and σ− stand for right-handed and left-handed polarization,
respectively. The relative intensities of the respective transitions are indicated.
The contributions of the split-off band are neglected.
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Table 1: Wave functions of the lowest conduction and highest valence band at
the Γ point of GaAs: symmetries and angular parts. (after [1])

Band symmetry |J,mJ⟩ Angular part of wave function
Γc
6 | 12 ,

1
2 ⟩ Y00 ↑

| 12 ,−
1
2 ⟩ Y00 ↓

Γv
7 | 12 ,

1
2 ⟩ −

√
2
3 (Y11 ↓ +

√
1
2Y10 ↑)

| 12 ,−
1
2 ⟩

√
2
3 (−Y11 ↑ −

√
1
2Y10 ↓)

Γv
8 | 32 ,

3
2 ⟩ Y11 ↑

| 32 ,
1
2 ⟩

√
1
3 (Y11 ↓ −

√
2Y10 ↑)

| 32 ,−
1
2 ⟩ −

√
1
3 (−Y ∗

11 ↑ +
√
2Y10 ↓)

| 32 ,−
3
2 ⟩ −Y ∗

11 ↓

Y11(−Y ∗
11) for σ

+(σ−) radiation, we conclude that

|⟨ 12 ,−
1
2 |Y11| 32 ,−

3
2 ⟩|

2

|⟨ 12 ,
1
2 |Y11| 32 ,−

1
2 ⟩|2

= 3. (2)

Comparing the probabilities for exciting an up-spin versus a down-spin state
in the conduction band establishes the desired spin imbalance: As radiation with
positive helicity is employed, it is three times as likely to generate a down spin
than an up spin in the lowest conduction band. The initial degree of density
spin polarization created in this manner is plausibly quantified by the ratio Pn

between the difference and the sum of the densities of electrons with spin up
and spin down:

Pn =
n↑ − n↓

n↑ + n↓
=

1− 3

1 + 3
= −1

2
(3)

Conversely, the degree of circular polarization in the radiation emitted in the
course of electron-hole recombination can be exploited as a measurable signature
of spin polarization. It may be detected in experiment by recording the ratio
[1]
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Pcirc =
Int+ − Int−

Int+ − Int−
, (4)

defined as circular polarization of the photoluminescence. The symbols
Int+/− denote here the intensity of light with right-handed and left-handed
polarization, respectively. With reference to transitions between the bands Γc

6

and Γv
8, this ratio results as

Pcirc =
(n↑ + 3n↓)− (3n↑ + n↓)

(n↑ + 3n↓) + (3n↑ + n↓)
=

1

4
(5)

Electron-hole recombination processes and spin relaxation effects are two
channels that reduce the initial degree of spin polarization, as given by Eq. (3).
Both are characterized by rate constants. Adopting the expressions r and 1

τs

for the rates of electron-hole recombination and spin relaxation, Žutiċ et al.
propose the following extension of formula (3) [?] 1:

Pn = Pn(t = 0)
1− n0nH0

nnH

1 + 1
τsrnH

, (6)

with n (nH) and n0 (nH0) as electron (hole) densities at t > 0 and t = 0,
respectively.

1This result is based on two relations that involve the rate of electron-hole photoexcitation,
G. Under equilibrium conditions, this rate must be compensated by electron-hole recombina-
tion, according to r(nnH − n0nH0) = G. The equivalent statement for the balance between

spin creation and annihilation is: r(n↑ − n↓)nH +
n↑−n↓

τs
= Pn(t = 0)G. These relations

imply Eq. (6)
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