
The Kubo formula of the electric conductivity



We consider an electron under the influence of an electric field E(t). This
system may be described by a Hamiltonian of the form

Ĥ(t) = Ĥ0 − e
∑
i

Ei(t)xi, (1)

with Ĥ0 as reference Hamiltonian. For simplicity, we assume a spatially
homogeneous field. We further stipulate that Ei = Ekδik and set exk = D̂. The
time evolution of the system is given by the Liouville-von Neumann equation:

∂ρ̂(t)

∂t
=

1

i~
[Ĥ(t), ρ̂(t)]. (2)

We split the density operator ρ̂ into a equilibrium part, ρ̂0, and a time-
dependent part ∆ρ̂(t), according to (ρ̂ = ρ̂0 + ∆̂ρ(t)). We then approximate

∂∆ρ̂

∂t
≈ 1

i~
([Ĥ0,∆ρ̂(t)]− Ek(t)[D̂, ρ̂0]. (3)

where use has been made of the relation [ρ̂0, Ĥ0] = 0. This equation is solved
by

∆ρ̂(t) = − 1

i~

∫ t

−∞
[D̂(t′ − t), ρ̂0]Ek(t

′)dt′. (4)

We operate here in the interaction picture, implying that D̂(t) ≡ Û†
0 (t)D̂Û0(t),

where the propagator Û0(t) is defined as exp(− i
~Ĥ0t). The change in an ob-

servable Ô as a function of time can then be found from

∆O(t) ≡ Tr{∆ρ̂Ô} = − 1

i~

∫ t

−∞
[D̂(t′ − t), ρ̂0]ÔEk(t

′)dt′ (5)

We extend the upper integration limit to positive infinity by introducing the
temporally non-local function γ:

γÔD̂(t) = − 1

i~
Θ(t)Tr{[D̂(−t), ρ̂0]Ô}, (6)

such that

∆O(t) =

∫ +∞

−∞
γ(t− t′)Ek(t

′)dt′ (7)

We factorize γ to separate the theta distribution:

γÔD̂(t) = θ(t)αÔD̂(t) (8)

and observe [1]

αÔD̂(t) =
1

i~
Tr{[ρ̂0, D̂(−t)]Ô} =

1

i~
Tr{ρ̂0[D̂(−t), Ô]} =

1

i~
Tr{ρ̂0[D̂(0), Ô(t)]}

(9)
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In the following step, we identify the operator Ô with the current density
operator ĵl. Setting jl(t = 0) = 0, we obtain from Eqs. (7) - (9):

jl(t) =

∫ +∞

−∞
θ(t− t′)αÔD̂(t− t′)Ek(t

′)dt′ (10)

and

αÔD̂(t− t′) =
1

i~
Tr{ρ̂0[D̂(0), ĵl(t− t′)]}. (11)

We find an expression for the conductivity from the Fourier transform of 10,
where the Fourier transform of f(t) is defined as f̃(ω) =

∫ +∞
−∞ f(t) exp(−iωt)dt,

and the back transform as f(t) = 1
2π

∫ +∞
−∞ f̃(ω) exp(iωt)dω. Thus

j̃l(ω) =

∫ +∞

−∞
jl(t) exp(−i(ω + iη)t)dt

=

∫ +∞

−∞

∫ +∞

−∞
Θ(t− t′)αÔD̂(t− t′) exp(−i(ω + iη)(t− t′))dtEk(t

′) exp(−i(ω + iη)t′)dt′

=

∫ +∞

−∞
σ(ω)Ek(t

′) exp(−i(ω + iη)t′)dt′.

(12)

We include here an infinitesimal increment iη to ensure that the interaction
vanishes exponentially as t, t′ → −∞. Summarizing:

j̃l(ω) = σ̃lk(ω)Ẽk(ω), (13)

with

Ẽk(ω) =

∫ +∞

−∞
Ek0(t

′) exp(−i(ω + iη)t′)dt′, (14)

and

σ̃lk(ω) =
1

i~

∫ +∞

0

Tr{ρ̂0[D̂(0), ĵl(t)]} exp(−i(ω + iη)t)dt. (15)

We bring the right-hand side of this equation into a more symmetric form,
using the relation

α̃ÂB̂(ω) =
i

ω
α̃ĈB̂(ω), (16)

where

Ĉ(t) =
dÂ

dt
(t). (17)
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To justify this result, we operate with the complete bases |m⟩⟨m| and |n⟩⟨n|,
and set

ρ̂0 = |m⟩pm⟨m|. (18)

Thus, we have

αÂB̂(t) =
1

i~
∑
m,n

pm(AmnBnme−iωmnt −BnmAmne
iωmnt), (19)

where ωmn ≡ (Em−En)
~ . For the Fourier transform of αÂB̂(t) we find

α̃ÂB̂(ω) =
2π

i~
∑
m,n

pm(AmnBnmδ(ω + ωmn)−BmnAnmδ(ω − ωmn)). (20)

If Ĉ = dÂ
dt = 1

i~ [Â, Ĥ0], then

α̃ĈB̂(ω) =
2π

i

∑
m,n

pm(−ωnmAmnBnmδ(ω + ωmn)− ωmnBmnAnmδ(ω − ωmn)),

(21)
from which we obtain Eq.(16).
We identify Â with the dipole moment operator and derive the following

relation between D̂ and ĵk:

ĵk(t) =
1

ad
dD̂

dt
(t). (22)

where ad is the d-dimensional real space volume per particle. As we use Eq.
(17) to substitute for D̂(0) in Eq. (15), we obtain:

σ̃lk(ω) =
ad

~ω

∫ +∞

0

Tr{ρ̂0[ĵk(0), ĵl(t)]} exp(−i(ω + iη) t)dt. (23)

This expression for σlk(ω) is referred to as Kubo’s formula of conductivity.
Using the identity

ĵl =
e

ad
v̂l, (24)

with

v̂l =
i

~
[Ĥ, xl] =

i

~
[Ĥ0, xl] (25)

we express the current density operators ĵ through velocity operators v̂.
Further, we consider the transverse conductance in the two-dimensional case,d =
2, as relevant for the quantum Hall effect in a graphene sheet. With k = x and
l = y, this yields:
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σ̃xy(ω) =
e2

~ωa2

∫ +∞

0

Tr{ρ̂0[v̂x(0), v̂y(t)]} exp(−i(ω + iη)t)dt. (26)

In order to carry out the trace, we adopt the basis {|m⟩}, where

Ĥ0|m⟩ = Em|m⟩. (27)

We note that

ρ̂0|m⟩ = F (Em)|m⟩, (28)

where F denotes the Fermi-Dirac distribution, and

⟨n|v̂y(t)|m⟩ = ⟨n|Û†
0 (t)v̂yÛ0(t)|m⟩ = exp(− i

~
(Em − En)t)⟨n|v̂y|m⟩. (29)

With the help of the latter statements, and after inserting a complete basis
|n⟩⟨n| = 1̂ between the operators v̂x and v̂y, the integration in Eq. (26) can be
performed directly. This results in [2]

σ̃xy(ω) =
e2

iωad

∑
m,n

(F (Em)− F (En))
⟨m|v̂x|n⟩⟨n|v̂y|m⟩

~ω + i~η + Em − En
. (30)

Expanding 1
~ω+i~η+Em−En

up to first order with respect to ~ω, we obtain

σ̃xy(ω) =
i~e2

ad

∑
m,n

(F (Em)− F (En))
⟨m|v̂x|n⟩⟨n|v̂y|m⟩

~ω − i~η + Em − En
. (31)

Note that the zeroth-order term of this expansion does not contribute, as the
sum over m,n vanishes for this contribution. Considering the DC conductivity
(ω = 0) at zero temperature, and setting η = 0, we find

σ̃xy(ω) =
i~e2

ad

∑
m,n

(Θ(EF − Em)−Θ(EF − En))
⟨m|v̂x|n⟩⟨n|v̂y|m⟩

(Em − En)2
. (32)

The factor following the summation sign is non-zero only if Em < EF < En

or En < EF < Em. Summing over these two configurations results in

σ̃xy =
i~e2

ad

∑
Em<EF ,En>EF

⟨m|v̂x|n⟩⟨n|v̂y|m⟩ − ⟨m|v̂y|n⟩⟨n|v̂x|m⟩
(Em − En)2

. (33)

In the following, we focus on electronic states in lattices, as described by
Bloch functions (see (3.116)), assuming |m⟩, |n⟩ to be located in the first Bril-
louin zone. From Eq. (25), we conclude
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⟨n|v̂i|m⟩ = ⟨n|xiĤ0|m⟩ − ⟨n|Ĥ0xi|m⟩
i~

=
Em − En

i~
⟨n|xi|m⟩ = Em − En

~
⟨n| ∂

∂ki
|m⟩,

(34)
where i = x, y. Likewise:

⟨m|v̂i|n⟩ = −En − Em

~
⟨ ∂

∂ki
m|n⟩. (35)

The latter relation involves a shift of the derivative ∂
∂ki

from the ket to the
bra position of the scalar product. This is legitimate, as the position operator in
k-space (=i ∂

∂ki
) is hermitian in the region considered here, namely a Brillouin

zone, and thus a space with periodic boundary conditions. By Eqs. (34) and
(35), it holds that

σ̃xy =
ie2

~ad
∑

Em<EF ,En>EF

⟨ ∂

∂kx
m|n⟩⟨n| ∂

∂ky
m⟩ − ⟨ ∂

∂ky
m|n⟩⟨n| ∂

∂kx
m⟩. (36)

The sum over the unoccupied states can be expressed through the sum over
the occupied states by employing the completeness relation:∑

En>EF

|n⟩⟨n| = 1−
∑

En<EF

|n⟩⟨n|. (37)

Transforming Eq. (36) by use of the identity (37) we find [3]

σ̃xy =
ie2

~ad
∑
k

∑
Em<EF

⟨ ∂

∂kx
m| ∂

∂ky
m⟩ − ⟨ ∂

∂ky
m| ∂

∂kx
m⟩. (38)

The contribution to σ̃xy due to the second term on the right-hand side of
Eq. (37) yields an expression that is odd with respect to the exchange of the
indices m and n and thus vanishes upon summing over these indices. In what
follows, we will consider the two-dimensional case which is of relevance for the
planar graphene sheet. In order to take formula (38) into its ultimate form we
make two further steps. First, we average the conductivity as given by Eq. (38)
over the first Brillouin zone (BZ), involving integration with respect to kx, ky

over the Brillouin zone while simultaneously dividing through its area, (2π)2

ad
1:

σ̃BZ
xy =

ie2

h

∫
BZ

dkxdky
2π

∑
Em<EF

⟨ ∂

∂kx
m| ∂

∂ky
m⟩ − ⟨ ∂

∂ky
m| ∂

∂kx
m⟩. (39)

Secondly, we introduce the vector field Ak by defining

1Each k-space area cell contributes
dkxdky

(2π)2
to the electron density, see p.91 of the main

text.
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Ak,x = i
∑

Em<EF

⟨m| ∂

∂kx
m⟩, Ak,y = i

∑
Em<EF

⟨m| ∂

∂ky
m⟩. (40)

Substituting Eq. (40) into Eq. (39), we find

σ̃BZ
xy =

e2

h

∫
BZ

dkxdky
2π

[
∂

∂kx
Ak,y −

∂

∂ky
Ak,x]. (41)

or, dropping the superscript BZ:

σ̃xy =
e2

h

∫
BZ

dkxdky
2π

(∇k ×Ak)z. (42)

By use of Stoke’s theorem, the right-hand side may be expressed as a line
integral over the contour of the first Brillouin zone:

σ̃xy =
e2

2πh

∮
dkAk. (43)
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