
Section 2.4∗:Existence of a non-trivial diabatic basis

The diabatic condition, i.e. the identical vanishing of the vector potential in
Eq.2.49, is trivially satisfied for electronic states that are independent of the
nuclear coordinate R, as discussed above. Those states, however, tend to be
of very limited practical relevance. To be appropriate in an actual quantum

chemical situation, a diabatic basis of the form {ψ(0)
m (x)} will have to be so ex-

tensive that any basis at a particular nuclear configuration R of the considered
system can be represented by expansion into the basis functions at any other
configuration R′. This requirement is strictly met only for complete electronic
bases. An approximate treatment involving a trivially diabatic basis ϕm(x) thus
necessitates the use of a very large basis set [10]. This predicament raises the
question for non-trivial diabatic states, defined as real-valued electronic basis
functions ψ̃n(x,R) that contain a parametric dependence on the nuclear coor-
dinates and are yet compatible with a vanishing derivative coupling according
to

Ã12 = ⟨ψ̃1(x,R)| ∂
∂R

|ψ̃2(x,R)⟩ = −⟨ψ̃2(x,R)| ∂
∂R

|ψ̃1(x,R)⟩ = 0. (1)

To investigate conditions for the validity of Eq.(1) we restrict ourselves to two

states ψ̃1 and ψ̃2, as in Eqns.(2.57-2.59). The matrix W, however, connects now

two pairs of functions (ψ̃1(x,R), ψ̃2(x,R)) and (ψ1(x,R), ψ2(x,R)) that both
involve the R coordinate as parameters. Thus

ψ̃m(x,R) =
∑
n

Wmnψn(x,R) (2)

and

Ã12 = A12 +
∂θ(R)

∂R
(3)

The latter statement follows from the explicit form of the transformation matrix
W, as given by Eq.(2.57).Combining Eq.(3) with Eq.(1), one obtains

A12 = −∂θ(R)

∂R
. (4)

If, therefore, the vector A12 can be represented as a field derived from a scalar
potential θ(R), the existence of a non-trivial diabatic basis is guaranteed. A
consideration based on the Helmholtz theorem [11], however, demonstrates that
this condition is in general not satisfied [10]. To see this, we introduce the
Fourier transform A′

12(K) of A12(R) by

A12(R) =

∫
dK A′

12(K) exp(iK ·R). (5)

In the next step, we decompose A′
12(K) into a longitudinal and a transversal

component:
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A′
12(K) = A′long

12 (K) +A′trans
12 (K) (6)

with

A′long
12 (K) =

K[K ·A′
12(K)]

|K|2
(7)

and

A′trans
12 (K) =

K× [A′
12(K)×K]

|K|2
(8)

For simplicity, we assume three spatial dimensions. The generalization of the
arguments presented here to N dimensions can be found in the appendix of [10].
Setting

θ(R) = i

∫
dK

[K ·A′
12(K)]

|K|2
exp(iK ·R) (9)

and

C(R) = −i
∫
dK

A′
12(K)×K exp(iK ·R)

|K|2
, (10)

we find the equivalent decomposition of A12 in R space:

A12(R) = −∂θ(R)

∂R
+▽×C(R), (11)

where ▽ = ▽R. The longitudinal part thus derives from a scalar potential
while the transversal part is generated by a vector potential. From compari-
son with Eq.(4), we realize that the existence of a non-trivially diabatic basis
hinges on the condition that the curl of the vector potential C(R) vanishes.
This requirement may be examined more closely by using the Green’s function
formalism [11] in order to recast Eq.(10) as

C(R) =
1

4π

∫
dR′▽R′ ×A12(R

′)

|R−R′|
. (12)

The curl of this vector field vanishes only if ▽ ×A12(R) = 0. This translates
into the condition that
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∂A12,k(R)

∂Rj
− ∂A12,j(R)

∂Rk

=

⟨
∂ψ1(x,R)

∂Rj
|∂ψ2(x,R)

∂Rk

⟩
−
⟨
∂ψ1(x,R)

∂Rk
|∂ψ2(x,R)

∂Rj

⟩

=
∑
n

[⟨
∂ψ1(x,R)

∂Rj
|ψn(x,R)

⟩⟨
ψn(x,R)|∂ψ2(x,R)

∂Rk

⟩

−
⟨
∂ψ1(x,R)

∂Rk
|ψn(x,R)

⟩⟨
ψn(x,R)|∂ψ2(x,R)

∂Rj

⟩]
= 0.

(13)

For a general polyatomic situation, however, this requirement cannot be guar-
anteed. An exception from this rule is given by diatomic systems with states
ψ1 and ψ2 of equal symmetry. In these cases, A12 may be shown to depend
on one parameter only [10], namely the internuclear distance, and Eq.(13) is
automatically satisfied.

0.0.1 Quasidiabatic states

In general, therefore, the desired non-trivial diabatic basis {ψ̃m(x,R)} that
would reduce the derivative coupling to zero, does not exist. We thus ask for a
second best solution and try to identify a quasidiabatic basis {ψ̃m(x,R)} that
minimizes the derivative coupling. Following Pacher et al. [8], we select a
finite number of electronic states which are of importance for the problem at
hand and imagine a Hilbert subspace α where these states reside. This leads to
a block representation of the derivative coupling matrices Ai (see Eqns.(2.10,
2.46, 2.47):

Ai =

 Ai,αα Ai,αβ

Ai,βα Ai,ββ

 ≡

 ai ci

−c†i bi

 (14)

where the index β stands for the complement of the subspace α. We assume that
the interaction between the two subspaces, described by Ai,αβ = ci, is small
enough to provide a rationale for the subdivision (14). Restricting Eq.(2.49) to
the subspace α, we have(

−
∑
i

{
(I

∂

∂Ri
+Ai) · (I

∂

∂Ri
+Ai)

}
α

+Vα − EIα

)
χα = 0, (15)

or, employing the block form Eq.(14):

[−(▽+ a) · (▽+ a) +mV − EIα]χα = 0, (16)

where we have used the definition
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mV ≡ Vα + c c† (17)

and introduced the vectorial notation▽ ≡ (Iα
∂

∂R1
, ..., Iα

∂

∂RN
),a = (a1, ...,aN ),

and correspondingly for c, c†. The symbol Iα denotes the unit matrix in the
subspace α.

Our strategy for finding optimal quasidiabatic states will be to ask for condi-
tions that minimize a suitably chosen norm of the truncated matrices ai. If such
a minimum has been identified, applying an infinitesimal gauge transformation
to a will not change the norm. This transformation may be expressed in the
following form:

U(α) =

(
Uα 0
0 Iβ

)
=

(
u 0
0 Iβ

)
. (18)

To study the operation of u on a, we write the truncated wavefunction in the
subspace α in the form

Ψα(x,R) =
∑
m

ψm,α(x,R)χm,α(R) = ψT
α · χα. (19)

The function Ψα remains unchanged under the action of u. Thus

ψ̄
T
α = ψT

αu (20)

χ̄α = u†χα (21)

Acknowledging a possible dependence of u on the nuclear coordinates, we see
that the elements of the Schrödinger equation (16) transform under u as follows:

m̄V = u†mV u, (22)

ā = u†a u+ u†(▽u). (23)

In addition, it is readily shown that

▽χ̄α = u† ▽χα +(▽u†)χα. (24)

Combining the last two equations, and exploiting that uu† = I, one concludes

(▽+ ā)χ̄α = u†(▽+ a)χα. (25)

This latter result shows that the covariant derivative of χα changes under the
action of the gauge transformation u as χα itself. Summarizing the relations
(22-25), we infer the gauge invariance of the Schrödinger equation (16). More
precisely, we have established local as opposed to global gauge invariance, since
the transformation u is allowed to depend on the nuclear coordinates. An analo-
gous set of arguments can be employed to prove the invariance of the unrestricted
Schrödinger equation (2.49) with respect to general gauge transformations U.
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Exercise 2.4 : Use the definition of the derivative coupling (2.10) to establish
Eq.(23). From this result as well as the unitary property of u, conclude that
Eq.(25) is valid. Further, demonstrate that the form of Eq.(16) is invariant with
respect to the local gauge transformation represented by u.

Having clarified the transformation behavior of a under u, we will now fur-
ther comment on the determination of an optimal quasidiabatic basis that min-
imizes a. For this purpose, we invoke the Euclidean norm of a matrix:

||a||2 ≡ Tr(a†a) =
M∑
i=1

∑
k,k′

(a†i )kk′(ai)k′k. (26)

This norm is a function of the nuclear coordinates Ri(i = 1, ...,M). Integrat-
ing over these coordinates, we generate a measure that allows minimizing the
derivative coupling matrix. Thus:

Ξ ≡
∫

||a||2dR. (27)

The optimal diabatic basis will be one for which Ξ adopts its minimum. This
naturally presupposes that Ξ exists, which cannot be taken for granted and
thus has to be secured in each individual case of interest. Implementing the
search methodology mentioned above, we require the optimal matrix a to remain
unaltered under the action of an infinitesimal gauge transformation u, defined
as

u = Iα + iεα, (28)

where the generator εα is a Hermitian matrix. We obtain the transformed
derivative coupling matrix ā by applying the prescription (23). To first order in
εα, this yields

ā = a+ i[a, εα] + i(▽εα). (29)

This makes it possible to generate an expression for the difference between ||a||2
and ||ā||2 and the respective measures Ξ and Ξ̄. More specifically

||ā||2 − ||a||2 = iT r {[εα,a · a]− εα(▽ · a)− (▽ · a)εα +▽ · (εαa+ aεα)} .
(30)
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Exercise 2.5: Derive this expression, evaluating the conjugate of ā.

The corresponding difference in the measure Ξ is

δΞ = Ξ̄− Ξ = −i
∫
Tr{εα(▽ · a) + (▽ · a)εα}dR. (31)

In going from Eq.(30) to Eq.(31), we have used the fact that the trace over a
commutator vanishes, as well as the assumption that εαa + a εα disappears
at infinity. Hence, the volume integral over the divergence of the latter term
reduces to zero by the Gauss integral theorem. From Eq.(31), the optimal
quasidiabatic basis has to satisfy the condition

▽ · a = 0, (32)

in accordance with the requirement that δM vanishes for arbitrary εα. The
criterion (32) means that for quasidiabatic representation, a is to be defined in
the Lorentz gauge which eliminates the integrable component of this quantity.
This gauge consists in imposing on a gauge potential the condition of vanishing
full divergence [12] which, in general, includes a time component. In the present
case, however, this component is lacking, and the divergence is to be taken with
respect to the full space of nuclear coordinates.
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