
Section 6.5∗:The R matrix method

This well-tested, frequently applied device for solving the multichannel scat-
tering problem has first proved itself as a powerful computational tool in the
context of nuclear reactions [7], and has later been adjusted to the treatment
of electron-atom interactions [8] and molecular scattering [9]. To give an im-
pression of this methodology, we present a condensed outline of the R matrix
propagation scheme as developed by J.C.Light and coworkers [9, 10]. The pro-
cedure has been specifically designed to deal with inelastic as well as reactive
scattering processes. The method is based on the diabatic ansatz

Ψ(Q, ρ) =
N∑

n=1

ϕn(Q)Φn(ρ). (1)

for the scattering solution, involvingN channel functions ϕn and a set of transla-
tional functions {Φn} which depend on the scattering coordinate ρ. The nature
of the channel coordinates may vary from case to case. Thus, they might be
chosen as purely electronic or they might involve further nuclear coordinates
orthogonal to ρ. By integration over the degrees of freedom associated with the
channel functions, one obtains a differential equation of second order which, in
its most compact form, may be written as

∂2Φn(ρ)

∂ρ2
=

N∑
m=1

Wnm(ρ)Φm(ρ) (2)

with a symmetric coupling matrix W. Evidently, the system of equations (6.7)
is a special case of (2). In an initial step towards R matrix propagation, one
subdivides an interval [0, ρmax] into M segments with widths hi and center
locations ρi, where i = 1, · · · ,M . Subsequently, the coupling matrix is locally
diagonalized, i.e. the operation

T†(i)W(ρi)T
(i) = λ2(i) (3)

is carried out at each ρi. The matrix λ2(i) is diagonal with elements λ
2(i)
mn =

δmnλ
2 (i)
n . As W is assumed to be symmetric, the transformation matrix T(i)

is orthogonal, and T†(i) is its inverse, T−1(i). The translational functions trans-
form according to

χ(i)
n (ρ) =

N∑
m=1

T−1(i)
mn Φm(ρ). (4)

The channel functions obey the same transformation law. Negative coupling
matrix eigenvalues correspond to positive kinetic energy in the considered seg-
ment, and thus to open channels, while channels with positive eigenvalues are
closed. We construct a local R matrix R(i) that connects the sector functions
χ
(i)
n with their derivatives:
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χ(i)
r = R(i) ∂χ

(i)
r

∂ρ
(5)

with χ
(i)
ρ as the vector of the solution function for the sector i, evaluated at the

right end of the interval: χ
(i)
r ≡ χ(i)(ρ = ρi +

hi

2 ). At the core of the R-matrix

propagation method lies a prescription for determining R(i) recursively from
R(i−1). The procedure is continued until the location ρi reaches the asymptotic
regime of the studied collision problem. If K matrix boundary conditions have
been specified for the scattering situation, as was assumed in the preceding
section, relation (5) can be used to compute the K matrix elements.

The desired recursion formula is obtained by employing a relation between
the values adopted by χ(i) at the boundaries of the segment i and the derivatives
of χ(i) at these places. Specifically:

(
χ

(i)
l

χ(i)
r

)
=

(
r
(i)
1 r

(i)
2

r
(i)
3 r

(i)
4

)−∂χ
(i)
l

∂ρ
∂χ(i)

r

∂ρ

 , (6)

with χ
(i)
l referring to the left limit of the interval. The R matrix connecting

the derivatives and the functions in Eq.(6) consists of four N ×N submatrices.
Since the differential equation

∂2χ
(i)
n (ρ)

∂ρ2
= (λ(i)

n )2χ(i)
n (ρ) (7)

is valid in each sector i, relation (6) can be broken down into N pseudo -one
dimensional problems of the form(

χ
(i)
n l

χ
(i)
n r

)
=

(
r
(i)
1 r

(i)
2

r
(i)
3 r

(i)
4

)−∂χ
(i)
n l

∂ρ
∂χ(i)

n r

∂ρ

 . (8)

Imposing suitable boundary conditions on the two linearly independent solutions

of Eq.(7) [10], one can indicate the elements r
(i)
k , k = 1 − 4, explicitly as (see

exercise 6.2)

r
(i)
1 = r

(i)
4 =

{
|λ(i)

n |−1coth|λ(i)
n |h if λ2

n > 0

−|λ(i)
n |−1cot|λ(i)

n |h if λ2
n ≤ 0

(9)

and

r
(i)
2 = r

(i)
3 =

{
|λ(i)

n |−1csch|λ(i)
n |h if λ2

n > 0

−|λ(i)
n |−1csc|λ(i)

n |h if λ2
n ≤ 0

(10)

At this point, the fragment nature of the translational functions χ
(i)
n must be

emphasized. The original ρ-dependent functions Φn(ρ) are continuous across
the borderlines between neighboring segments i, that is
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Φ(i−1)
n r = Φ

(i)
n l (11)

which is equivalent to

T̂ (i−1)T̂−1(i−1)Φ(i−1)
n r = T̂ (i)T̂−1(i)Φ

(i)
n l, (12a)

or, by Eq.(4) χ(i−1)
n r = Q̂(i− 1, i)χ

(i)
n l. (12b)

The symbol Q̂(i−1, i) stands for the operator product Q̂(i−1, i) ≡ T̂−1(i−1)T̂ (i)

which mediates between the basis states of adjacent sectors, and a corresponding

relation for the derivatives of χ
(i−1)
n . The matrices r

(i)
k , k = 1 − 4, as well as

Q(i− 1, i) are the ingredients of the R matrix recursion formula. As shown by
Zvijac and Light [11], R(i) is related to R(i−1) by:

R(i) = r
(i)
4 − r

(i)
3 Z(i)r

(i)
2 , (13a)

Z(i) = (r
(i)
1 +Q−1(i− 1, i)R(i−1)Q(i− 1, i))−1. (13b)

These two statements comprise the rule for advancing the R matrix along the
scattering coordinate once an initial matrix R(1), referring to a location close to
the origin ρ = 0 has been determined. From exercise 6.2, it may be concluded
that the R matrix method does not require the eigenvalue array λ2 (i) of the
coupling matrix W to be constant across the interval i.

Exercise 6.2 : Let χ
(i) I
n and χ

(i) II
n be two linearly independent solutions.

Solve equation (7) within the constraints

χ(i) I
n r = 1,

∂χ
(i) I
n l

∂ρ
= 0,

χ(i) II
n r = 0,

∂χ
(i) II
n r

∂ρ
= 1

Use the derived functions χ
(i) I
n and χ

(i) II
n as well as the fact that the Wronskian

formed from them does not depend on ρ to demonstrate the validity of the
expressions (9) and (11) for the pseudo–one-dimensional propagation matrix

elements r
(i)
l . Discuss the cases (λ

(i)
n )2 ≤ 0 (open channels) and (λ

(i)
n )2 > 0

(closed channels). Do your arguments have to be modified if λ
(i)
n depends on ρ?

3



4



Bibliography

[1] M.S. Child, Molecular Collision Theory, Academic Press, London, 1974

[2] e.g. Arfken, Mathematical Methods for Physicists, 3rd edition p. 899; see
3.94.

[3] e.g. J.N.Murrell, S.D.Bosanac, Introduction to the theory of atomic and
molecular collisions, John Wiley, Chichester, 1989, p. 91.

[4] see for instance. G.J.Tawa, S.L.Mielke, D.G.Truhlar, D.Schwenke, JCP 100,
5751 (1994).

[5] Wu, Ohmura, Quantum Theory of Scattering, Prentice Hall, 1962, Engle-
wood Cliffs, New Jersey.

[6] E.U.Condon, G.H.Shortley, The Theory of atomic spectra, Cambridge Uni-
versity Press, Cambridge (1935).

[7] A.M. Lane, R.G.Thomas, Rev.Mod.Phys. 30, 257 (1958).

[8] P.G.Burke, A.Hibbert, W.D.Robb, J.Phys.B, 153 (1971).

[9] J.C.Light, R.B.Walker, JCP 65, 4272 (1976).

[10] E.B. Stechel, R.B.Walker, J.C.Light, JCP 69, 3518 (1978).

[11] D.J.Zvijac, J.C.Light, Chem.Phys.12, 237 (1976).

[12] B.R.Johnson, J.Comp.Phys.13, 445 (1973).

[13] F.Mrugala, D.Secrest, JCP 78, 5954 (1983).

[14] D.E.Manolopoulos, JCP 85, 6425 (1986).

[15] D.Secrest, B.R. Johnson, JCP 45, 4556, (1966).

[16] L.M.Delves, Nucl.Phys.9, 391 (1959).

[17] L.M.Delves, Nucl.Phys. 20, 275 (1960).

[18] F.T.Smith, Phys.Rev. 120, 1058 (1960).

5



[19] R.T.Pack, G.A.Parker, JCP 87, 3888 (1987).

[20] A.K.Kuppermann, P.G.Hipes, J.Chem.Phys. 84, 5962 (1986).

[21] A.T.Le, C.D.Lin, L.F.Errea, L.Mendez, A.Riera, B.Pons, PRA 69, 62703
(2004)).

[22] J.Z.H.Zhang, Theory and Application of Quantum Molecular Dynamics,
World Scientific, Singapore

[23] M.Baer, ed., Theory of Cemical Reaction Dynamics, Vol.1, CRC Press,
Boca Raton (1985)

[24] A.M. Arthurs, A. Dalgarno, Proc.Roy.Soc. A256, 50 (1960).

[25] J.H.Van Vleck, Rev.Mod.Phys. 23, 213 (1951).

6


