CSCI 4717/5717 Computer Architecture

Topic: CPU Registers

Reading: Stallings, Sections 12.1 and 12.2

CSCI 4717 - Computer Architecture

CPU Registers - Page 1

CPU Internal Design Issues

- CPU design and operating system design are closely linked
- Compiler also has heavy dependence on CPU design

CSCI 4717 - Computer Architecture

CPU Registers - Page 2

CPU Internal Design Issues

From our discussion of the architecture of the computer, we've put some requirements on the CPU:

- Fetch instructions from memory
- Interpret instructions to determine action that is required
- Feich data that may be required for execution (could come from memory or I/O)
- Process data with arithmetic, logic, or some movement of data
- Write data to memory or I/O

CSCI 4717 – Computer Architecture CPU Registers – Page 3

CPU Internal Structure Design decisions here affect instruction set design Arithmetic and Logic Unit (Registers - Page 4) CSCI 4717 - Computer Architecture CPU Registers - Page 4

CPU Internal Structure (continued)

- · Arithmetic Logic Unit
 - Status flags
 - Shifter
 - Complementer
 - Arithmetic logic
 - Boolean logic
- Internal CPU bus to pass data back and forth between items of CPU

CSCI 4717 - Computer Architecture

CPU Registers - Page 5

CPU Internal Structure (continued)

Registers

- CPU must have some working space (temporary storage) to remember things
 - Data
 - location of last instruction or next instruction
 - instruction as it's working with it
- Number and function vary between processor designs
- One of the major design decisions
- Absolute top level of memory hierarchy

CSCI 4717 - Computer Architecture

CPU Registers - Page 6

CPU Internal Structure (continued)

Two types of registers:

- User-visible registers -- allow for operations with minimal interaction with main memory (programmer takes place of cache controller)
- Control and Status Registers -- with correct privileges, can be set by programmer.
 Lesser privileges are required to read them.

CSCI 4717 - Computer Architecture

CPU Registers - Page 7

CPU Internal Structure (continued)

- Control unit -- managing operation of all CPU items
- Internal CPU bus to pass data back and forth between items of CPU

CSCI 4717 - Computer Architecture

CPU Registers - Page 8

User Visible Registers

- Accessed through machine/assembly language instructions
 - General Purpose
 - Data
 - Address
 - Condition Codes
- Represent complete user-oriented view of processor -- therefore, storing and later restoring effectively resets processor back to stored state

CSCI 4717 - Computer Architecture

CPU Registers - Page 9

General Purpose Registers

- May be true general purpose -- can contain the operand for any opcode
- May be restricted -- floating point only, integer only, address only
- May be used for data or addressing -- some may do either address or data, in some cases there may be a clear distinction between data and address registers
- Accumulator → Data
- Addressing
 - Segment
 - Index -- may be autoindexed
 - Stack

CSCI 4717 - Computer Architecture

CPU Registers - Page 10

Register Design Issues

The range of design decisions goes from...

- · Make all registers general purpose
 - Increase flexibility and programmer options
 - Increase instruction size & complexity
- Make them specialized
 - Smaller more specialized (faster) instructions
 - Less flexibility

CSCI 4717 - Computer Architecture

CPU Registers - Page 11

Register Design Issues (continued)

How many general purpose registers?

- Number affects instruction set design => more registers means more operand identifier bits
- Between 8 32
- Fewer
- Remember that the registers act as a very small cache
- The fewer GP registers, the more memory references
- More does not necessarily reduce memory references and takes up processor real estate RISC needs are different and will be discussed later

CSCI 4717 – Computer Architecture

CPU Registers - Page 1.

Register Design Issues (continued)

How big do we make the registers?

- · Address -- large enough to hold full address
- Data -- large enough to hold full word
- Often possible to combine two data registers
 -- e.g. AH + AL = AX
- Example: Do we link the design of registers to a standard, e.g., C programming
 - double int a;
 - long int a;

CSCI 4717 - Computer Architecture

CPU Registers - Page 13

Condition Code Registers (flags)

- Sets of individual bits each with a unique purpose (e.g. result of last operation was zero)
- Opcodes can read values to determine outcomes (e.g., conditional jumps)
- Automatically set as a result of some operations
- Some processors allow user to set or clear them explicitly
- Collected into group and referred to as a single register (CCR)

CSCI 4717 - Computer Architecture

CPU Registers - Page 14

Control & Status Registers

Types of control & status registers

- Registers for movement of data between CPU and memory
 - Program Counter (PC)
 - Instruction Register (IR)
 - Memory Address Register (MAR)
 - Memory Buffer Register (MBR)
- Optional buffers used to exchange data between ALU, MBR, and user-visible registers
- Program Status Word (PSW)
- · Address pointers used for control
- Built-in processor I/O control & status registers

CSCI 4717 - Computer Architecture

CPU Registers - Page 1:

Control & Status Registers (continued)

- Program Counter (PC)
 - Automatically incremented to next instruction as part of operation of current instruction
 - Can also be changed as result of jump instruction
- Instruction Register (IR)
 - Most recently fetched instructions
 - Where instruction decoder examines opcode to figure out what to do next

CSCI 4717 - Computer Architecture

CPU Registers - Page 16

Control & Status Registers (continued)

- Memory Address Register (MAR)
 - Memory address of current memory location to fetch
 - Could be instruction or data
- Memory Buffer Register (MBR)
 - Last word read from memory (instruction or data)
 - Word to be stored to memory

CSCI 4717 - Computer Architecture

CPU Registers – Page 17

Control & Status Registers (continued)

Program Status Word (PSW) – May be exactly the same thing as user-visible condition code register

- · A set of bits which include condition codes
 - Sign of last result
 - Zero
 - CarryEqual
 - EqualOverflow
 - Interrupt enable/disable
 - Supervisor
 - Examples: Intel ring zero, kernel mode
 - · Allows privileged instructions to execute
 - Used by operating system
 - Not available to user programs

CSCI 4717 - Computer Architecture

CPU Registers - Page 18

Control & Status Registers (continued)

- · Address pointers used for control
 - Interrupt vectors
 - System stack pointer
 - Page table pointer for hardware supported virtual memory
 - Chip select controls
- On processor I/O
 - Status and control to operate the I/O
 - E.g., serial ports -- bps rate, interrupt enables, buffer registers, etc.

CSCI 4717 - Computer Architecture

CPU Registers - Page 19