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Abstract aArg-376, bLys-155, and bArg-182 are catalytically
important ATP synthase residues that were proposed to be in-
volved in substrate Pi binding and subsequent steps of ATP syn-
thesis [Senior, A.E., Nadanaciva, S. and Weber, J. (2002)
Biochim. Biophys. Acta 1553, 188–211]. Here, it was shown
using purified Escherichia coli F1-ATPase that whereas Pi pro-
tected wild-type from reaction with 7-chloro-4-nitrobenzo-2-
oxa-1,3-diazole, mutations bK155Q, bR182Q, bR182K, and
aR376Q abolished protection. Therefore, in ATP synthesis ini-
tial binding of substrate Pi in open catalytic site bE is supported
by each of these three residues.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

ATP synthase is the enzyme responsible for ATP synthesis in

oxidative and photo-phosphorylation in eukaryotes and pro-

karyotes, and for ATP-dependent formation of a transmem-

brane gradient of protons (or Na+ ions) in prokaryotes

under anaerobic conditions. The enzyme from Escherichia coli

represents the simplest structural example and consists of the

membrane-extrinsic F1 sector (subunits a3b3cde) and the mem-

brane-associated Fo sector (subunits ab2c10). X-ray structures

of bovine enzyme [1] established the presence of three catalytic

sites at a/b subunit interfaces of the a3b3 hexamer in the F1 sec-

tor. An important feature of the mechanism is that one group

of subunits (the ‘‘rotor’’ made up of cec10) undergoes rapid,

continuous, 360� rotation as catalysis proceeds [2]. In the

direction of ATP-driven proton transport, sequential ATP

hydrolysis at the three catalytic sites generates rotation of c,
and rotation of the connected c10 ring against the a subunit

moves protons outward across the membrane. A ‘‘stator’’

made up of b2d subunits prevents co-rotation of catalytic sites

and a subunit with the rotor. Conversely, during oxidative

phosphorylation, rotation is in the opposite direction and gen-

erates ATP [3,4]. Recent reviews of ATP synthase structure

and function may be found in [5,6].
Abbreviations: NBD-Cl, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole;
DTT, dithiothreitol; MgADP–BeFx, complex of MgADP and
beryllium fluoride
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The reaction mechanisms of ATP hydrolysis and synthesis

and their relationship to mechanical rotation in this molecular

nanomotor are therefore of topical interest. In recent work,

our laboratory has studied Pi binding, for two reasons. First,

it was shown [7–9] that Pi binding is ‘‘energy-linked’’, implying

that it is linked directly to subunit rotation. Second, as an

explanation of how the enzyme binds ADP into catalytic sites

during ATP synthesis against apparently prohibitive cellular

ATP/ADP concentration ratios, we proposed [10] that rota-

tion-linked binding of Pi occurs first and thereby allows

ADP binding while sterically preventing ATP binding. Perez

et al. [11] using bovine enzyme showed that Pi protected from

inhibition by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-

Cl) and Orriss et al. [12] showed by X-ray crystallography that

NBD-Cl reacts specifically in catalytic site bE. Together, this
information provides an assay for initial binding of substrate

Pi in site bE in ATP synthesis. We found that Pi protected

wild-type E. coli F1 from NBD-Cl reaction and that mutagen-

esis of residue bArg-246 1 to Ala, Gln or Lys abolished Pi pro-

tection [13]. Thus, consistent with its charge and location 4.5 Å

from the SO2�
4 anion in the bADP + Pi catalytic site [14], res-

idue b-Arg-246 was shown to be a Pi binding residue.

Based on fluorimetric assays of MgATP, MgADP, and tran-

sition state analog binding in mutant enzymes, and utilizing X-

ray structure information, we presented previously a proposal

for the molecular mechanism of ATP synthesis [15]. We fo-

cussed on three critical catalytic site residues, namely bLys-
155 (of the Walker A sequence), bArg-182 and aArg-376,

invoking roles for each in Pi binding/release, transition state

stabilization, and MgATP binding/release. However, relevant

measurements of Pi binding had not been reported. Here, we

assayed Pi binding in catalytic site bE by measuring protection

from NBD-Cl reaction in aR376Q, aR376K, bK155Q,

bR182Q, and bR182K mutant enzymes. The data yield

additional support for our proposal regarding ATP synthase

reaction mechanism.
2. Materials and methods

2.1. Purification of F1; depletion of catalytic-site bound nucleotide; assay

of ATPase activity of purified F1

F1 was purified as in [16]. Prior to the experiments, F1 samples (100
ll) were passed twice through 1 ml centrifuge columns (Sephadex G-
50) equilibrated in 50 mM Tris–SO4, pH 8.0, to remove catalytic
site-bound nucleotide [17]. Catalytic-site bound nucleotide was assayed
using the quench of fluorescence (kexc = 295 nm, kem = 360 nm) of the
1 E. coli residue numbers used throughout.
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specific probe bTrp-331, present in all the mutant enzymes. As estab-
lished previously [18], addition of saturating (2 mM) MgATP or
MgADP to enzyme with empty catalytic sites yields 51% quench of
b-Trp331 fluorescence. Using this technique it was found that the mu-
tant enzyme preparations, after passage through two centrifuge col-
umns as above, contained 60.2 mol/mol of catalytic site bound
nucleotide. ATPase activity was measured in 1.0 ml assay buffer con-
taining 10 mM NaATP, 4 mM MgCl2, and 50 mM Tris–SO4, pH
8.5, at 37 �C. Reactions were started by addition of enzyme and
stopped by addition of SDS to 3.3% final concentration. Pi was as-
sayed as in [19]. For wild-type F1, reaction times were 2–5 min, with
5–20 lg. For mutant enzymes, reaction times were 30–120 min, using
20–100 lg. All reactions were shown to be linear with time and protein
concentration.

2.2. E. coli strains
Wild-type strain SWM1 was used [20]. Mutant strains were aR376Q/

bY331W and aR376K/bY331W [21], bR182Q/bY331W and bR182K/
bY331W [22], and bK155Q/bY331W [23]. All these enzymes contained
the bY331W mutation to make them compatible with previous work
involving fluorimetric estimations of nucleotide binding and transition
state formation and to allow calculation of catalytic-site bound nucle-
otide as in Section 2.1 above [18,21–25]. The bY331W mutation by
itself does not significantly affect activity.

2.3. Inhibition of ATPase activity
For NBD-Cl inhibition of purified F1, enzyme (0.2–1.0 mg/ml) was

reacted with NBD-Cl for 60 min in the dark, at 23 �C, in 50 mM Tris–
SO4, pH 8.0, and 2.5 mM MgSO4, then 50 ll aliquots were transferred
to 1.0 ml of ATPase assay buffer. Where protection from NBD-Cl inhi-
bition was determined, F1 was preincubated 60 min with MgADP or Pi
before addition of NBD-Cl. Control samples contained ligand without
added NBD-Cl. Neither Pi (up to 50 mM) nor MgADP (up to 10 mM)
had any inhibitory effect alone.
Table 1
ATPase activity of mutant F1 enzymes

F1 species Specific ATPase activity (lmol/min/mg)

Wild-type 42.0
bK155Q 0.023 (1830·)
bR182K 0.250 (168·)
bR182Q 0.020 (2100·)
aR376K 0.120 (350·)
aR376Q 0.025 (1680·)

Results are means of 15–20 replicates which agreed ±10%. Numbers in
parentheses indicate reduction in activity caused by the mutation.

Fig. 1. Reaction of mutant and wild-type enzymes with NBD-Cl. F1 was reac
at 23 �C, then aliquots of reacted enzyme were assayed for ATPase activity.
different in panels A, B, and C.d, bK155Q;j, bR182Q;h, bR182K; D, aR3
experiments which agreed within ±10%.
3. Results

3.1. ATPase activity of F1 enzymes containing mutations at

residues bLys-155, bArg-182, and aArg-376
Table 1 shows specific ATPase activity of mutant enzymes

measured at 37 �C. Each of these mutations had been shown

previously to strongly impair both ATP synthesis in cells and

ATP hydrolysis in purified enzyme, so it was not surprising

that the activities shown in Table 1 were very low indeed.

However, this was the first time the specific ATPase activities

had been determined accurately at elevated temperature with

large amounts of enzyme for long incubation periods. Dupli-

cate (in some cases triplicate) preparations of the same mutant

enzyme gave the identical specific activity. Each of the enzymes

showed the same purity as wild-type when analyzed by SDS-

gel electrophoresis. The data show that the activities reported

are referable to F1 and not to contaminants and further data

supporting this are given below.

3.2. Reaction of mutant F1 enzymes with NBD-Cl and reversal

by dithiothreitol

Mutant enzymes were first reacted with varied concentra-

tions of NBD-Cl for 1 h at 23 �C, then assayed for ATPase

activity (Fig. 1). Surprisingly, both bK155Q (Fig. 1A) and

bR182Q (Fig. 1B) showed activation of ATPase by NBD-Cl;

whereas in wild-type (Fig. 1C, open circles), potent inhibiton

occurred consistent with many previous studies. Mutants

bR182K, aR376K and aR376Q were inhibited by NBD-Cl, al-

beit to differing degree and in each case less than in wild-type

(Fig. 1C). As Fig. 1C shows, increasing the concentration of

NBD-Cl in the preincubation above 100 lM did not result in

further inhibition. To be sure that maximal reaction with

NBD-Cl had been reached, we incubated each enzyme with

150 lMNBD-Cl for 1 h as in Fig. 1, then added a further pulse

equivalent to 200 lM NBD-Cl and continued incubation for a

further hour before assaying ATPase. There was no further de-

crease in activity of bR182K, aR376K or aR376Q enzymes,

showing that in these cases reaction was complete and that

the fully reacted enzyme retained residual activity. With

bK155Q and bR182Q enzymes, further activation was seen,

to the degree expected from Fig. 1A and B. When wild-type
ted with varied concentrations of NBD-Cl as shown for 1 h in the dark
Further details are given in Section 2. Note that the vertical axes are

76K;m, aR376Q; ands, wild-type. Results are means of quadruplicate
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and mutant enzymes were preincubated with 125 lM NBD-Cl

as in Fig. 1, then 4 mM dithiothreitol (DTT) was added and

incubation continued for 1 h before assay of ATPase, it was

seen that DTT completely reversed the effect of NBD-Cl (data

not shown). In wild-type enzyme, it was shown that NBD-Cl

reacts specifically with residue bTyr-297 and that incubation

with DTT removes reacted NBD and restores activity

[26,27]. Thus, NBD-Cl is reacting with residue bTyr-297 in

mutant F1 to produce the effects seen.

3.3. Protection against NBD-Cl reaction by MgADP or Pi

We previously found that MgADP protected against NBD-

Cl reaction in wild-type enzyme, but only at high concentra-

tions (EC50 �4 mM [13]), consistent with the conclusion of

Orriss et al. [12] that NBD-Cl reacts specifically in the bE
catalytic site. Here, we showed that the reaction of NBD-Cl

with mutant enzymes was protected by MgADP (Fig. 2) with

EC50 approximately the same in mutants and wild-type. From

this we may conclude that NBD-Cl is reacting in the bE site in

the mutants, and that the activities measured are due to F1 and

not due to a contaminant.

Protection against NBD-Cl reaction by Pi is shown in Fig. 3.

Open circles represent reaction of F1 (wild-type or mutant)

with NBD-Cl in the absence of Pi, open squares represent reac-

tion in the presence of 2.5 mM Pi, and open triangles represent

reaction in the presence of 10 mM Pi. Wild-type is shown in

Fig. 3A. The results show that Pi protects well confirming pre-

vious data [11,13]. Fig. 3B–D show mutants bK155Q, bR182K

and bR182Q, respectively. It is evident that all three mutations

abolish the ability of Pi to protect, demonstrating that residues

bLys-155 and bArg-182 are required for Pi binding in wild-

type. The substitution of Lys for Arg at residue b-182 is not

sufficient to support Pi binding, apparently. Figs. 3E and F

show aR376K and aR376Q, respectively. Protection is seen

in the Lys mutant but not in the Gln mutant. From the Gln

mutant result, we conclude that aArg-376 is involved in Pi

binding in wild-type; apparently, the Lys mutant can substitute

for Arg in carrying out Pi binding.
Fig. 2. Protection against NBD-Cl reaction by MgADP. Wild-type
and mutant enzymes were preincubated for 1 h at room temperature
with varied concentrations of MgADP as shown, then 125 lM NBD-
Cl was added and incubation continued at room temperature in the
dark for 1 h. Aliquots were then assayed for ATPase activity. Note
that the vertical axis in panel A is different to B, C. d, K155Q; j,
bR182Q; h, bR182K; D, aR376K; m, aR376Q; and s, wild-type.
Results are means of quadruplicate experiments which agreed within
±10%.
4. Discussion

Mutagenesis and X-ray structural analyses of F1, the cata-

lytic sector of ATP synthase, had identified three basic residues

within catalytic sites as critical for catalysis, namely bLys-155
(of the Walker A sequence), bArg-182 and aArg-376. We ear-

lier reported MgATP and MgADP binding parameters in mu-

tant enzymes aR376K, aR376Q, bK155Q, bR182K and

bR182Q by fluorimetric analyses using introduced bTrp-331
as specific catalytic site probe, and analyses of transition state

formation using MgADP–fluoroaluminate and MgADP–

fluoroscandium as transition state analogs [21–25]. Missing

from these analyses was a direct measurement of Pi binding

in the mutant enzymes. Such assays are presented in this paper.

The bK155Q mutant lacks ATP synthesis [23] and has very

low F1-ATPase activity (Table 1). Previous work had shown

that residue bLys-155 plays a major role in binding MgATP,

particularly at catalytic sites of high and medium nucleotide

affinity, but not in binding MgADP [23]. bLys-155 is also crit-

ical for transition state formation [24,25]. X-ray structures of

native F1 with MgAMPPNP and MgADP bound [1], of

MgADP–BeFx inhibited F1 [28], of MgADP–AlF4
� inhibited
F1 representing the transition state [14], and of MgADP–

AlF3 inhibited F1 representing the late transition state/early

ground state [29] all show the e-amino group of bLys-155 very

close (63 Å) to the c-phosphate position, consistent with the



Fig. 3. Protection against NBD-Cl reaction by Pi. Wild-type and mutant enzymes were preincubated with Pi for 1 h at room temperature, then 100
lM NBD-Cl was added. Aliquots were withdrawn at time intervals shown for ATPase assay. ATPase activity remaining is plotted against time of
incubation with NBD-Cl. (A) Wild-type; (B) bK155Q; (C) bR182K; (D) bR182Q; (E) aR376K; and (F) aR376Q. s, no Pi added; h, 2.5 mM Pi; D,
10 mM Pi. Results are means of quadruplicate experiments which agreed within ±10%.

2 A recent X-ray structure [28] showed that bound MgADP–BeFx

mimicked bound MgATP. In assays of F1-ATPase we found that wild-
type and aR376Q were fully inhibited by MgADP plus BeFx, whereas
bK155Q and bR182Q were fully resistant (Ahmad, Z., and Senior,
A.E., unpublished work), supporting that bLys-155 and bArg-182 are
MgATP ligands but aArg-376 is not. Stringent stereochemical orien-
tation factors may play a role in determining functional interactions of
aArg-376.
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above conclusions. We had hypothesized further that bLys-155
was important for Pi binding in ATP synthesis [15]. This was

experimentally confirmed in this work by the data in Fig.

3B, showing that Pi binding in the bE catalytic site is abolished

in bK155Q. Therefore, residue bLys-155 is involved at all

stages of ATP synthesis from Pi binding through the transition

state to MgATP formation.

Mutants bR182Q and bR182K lack ATP synthesis activity

[22] and have low F1-ATPase (Table 1). Residue bArg-182

had been shown to be involved in MgATP binding at the site

of highest affinity [22] but not in MgADP binding. Transition

state formation is abolished by bR182Q but retained in

bR182K [22]. In this regard it may be noted that bR182K F1

did have somewhat higher ATPase activity (Table 1). We

had hypothesized that bArg-182 is required for Pi binding in

ATP synthesis [15], this was confirmed by data in Fig. 3C

and D, where both bR182Q and bR182K mutations abolished

Pi binding in site bE. Therefore, residue bArg-182 is also in-

volved at all stages of ATP synthesis from Pi binding through

ATP formation.

Following the G-protein literature, we earlier applied the

term ‘‘arginine finger’’ to describe residue aArg-376, based

on the findings that it was a required ligand for the catalytic
transition state but was not involved in MgATP or MgADP

binding [21], this despite its apparent proximity to the c-phos-
phate of MgAMPPNP in X-ray structures. 2 Movement of this

residue in and out of the catalytic site was inferred, and was

postulated to produce the rate acceleration (positive catalytic

cooperativity) linked to subunit rotation and full (tri-site) cat-

alytic site occupancy that is a hallmark of the mechanism [15].

Significant spatial displacements of residue aArg-376 have

been noted in X-ray structures representing different reaction

intermediates [1,14,28–30] and it was discussed that conforma-

tional freedom of this residue likely contributes to its impor-

tance in catalysis [28].

We had hypothesized a role for this residue in Pi binding in

ATP synthesis [15] and this was confirmed here by Fig. 3F in

which Pi failed to protect aR376Q F1 from NBD-Cl inhibition.



Z. Ahmad, A.E. Senior / FEBS Letters 579 (2005) 523–528 527
However, just as aR376K mutant was able to form the transi-

tion state [21], so it was also able to support Pi binding (Fig.

3E). It is nevertheless strongly impaired in both ATP synthesis

and hydrolysis, emphasizing that this residue has other re-

quired function(s), likely in conformational movements or in

H-bonding to other side-chains, that are specific to Arg and

not supported by Lys.

In the assays of Pi binding presented here, no nucleotide was

present and enzymes were prepared so as to have all three cat-

alytic sites essentially empty (see Section 2.1). The sites would

therefore be in conformation bE. In this conformation [29],

aArg-376 and bArg-246 (identified in [13] as a Pi-binding resi-

due) lie 2.6 and 4.0 Å from bArg-182, whereas bLys-155 lies 9.5,
7.3, and 6.3 Å from aArg-376, bArg-182 and bArg-246, respec-

tively. In essence the four residues form a triangle, with bLys-
155 at the apex and aArg-376, bArg-182 and bArg-246 along

the base. A potential Pi-binding pocket can readily be envis-

aged at the center of the triangle. In ATP synthesis, the bE site

will change to the b ADP + Pi (half-closed) site in association

with c-rotation [14,15]. The X-ray structure of this conforma-

tion [14] shows that each of the residues aArg-376, bLys-155
and bArg-182 is located 63.0 Å from the nearest oxygen atom

of bound SO2�
4 anion (thought to represent Pi), whereas bArg-

246 is 4.5 Å from the sulfate. Thus, as the reaction proceeds the

three residues aArg-376, bLys-155 and bArg-182 close around

the Pi and move it away from bArg-246 toward the site of tran-

sition state formation, consistent with [15].

Summarizing, data presented here support a proposed molec-

ular mechanism for ATP synthesis [15]. Initially, substrate Pi

binds in the bE catalytic site using four basic residues as ligands,

namely the three described in this paper, aArg-376, bArg-182

and bLys-155, plus bArg-246 as described in [13]. After binding

of MgADP (in which these four residues are not involved), the

catalytic transition state forms, using aArg-376, bArg-182 and

bLys-155 as direct ligands. Upon formation of MgATP,

aArg-376 withdraws and no longer interacts, whereas bLys-
155 and bArg-182 are still liganded to the c-phosphate. Release

of MgATP to the medium involves breaking these ligands. Li-

gands to the Mg2+ cation [30,31] are bThr-156 (direct), bGlu-

185 and bAsp-242 (both via water molecules), which are also

critical for the reaction. In the foregoing we have discussed only

ligands involved directly in liganding Pi, the pentavalent phos-

phate of the catalytic transition state, and the c-phosphate of

MgATP. Sequential, rotation-dependent utilization of catalytic

sites (bE, bADP + Pi, bTP, and bDP) in ATP synthase means

that different steps of the reaction mechanism occur in temporal

succession in distinct conformations of the catalytic sites. This

was discussed previously by our laboratory in [15] and an excel-

lent recent discussion may be found in [28].
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