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1 Introduction and Preliminary Results

In this supplement, we will assume that all graphs are undirected graphs with
no loops or multiple edges. In graph theory, we talk about graph isomor-
phisms. As a reminder, an isomorphism between graphs G and H is a bijec-
tion φ : V (G) → V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H).
A graph automorphism is simply an isomorphism from a graph to itself. In
other words, an automorphism on a graph G is a bijection φ : V (G) → V (G)
such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(G). This definition gener-
alizes to digraphs, multigraphs, and graph with loops.

Let Aut(G) denote the set of all automorphisms on a graph G. Note that
this forms a group under function composition. In other words,

(i) Aut(G) is closed under function composition.

(ii) Function composition is associative on Aut(G). This follows from the
fact that function composition is associative in general.

(iii) There is an identity element in Aut(G). This is mapping e(v) = v for
all v ∈ V (G).
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Figure 1: A graph and its automorphisms

(iv) For every σ ∈ Aut(G), there is an inverse element σ−1 ∈ Aut(G). Since
σ is a bijection, it has an inverse. By definition, this is an automor-
phism.

Thus, Aut(G) is the automorphism group of G. At this point, an example
is order. Consider the graph G illustrated in Figure 1. An automorphism
of G can leave every vertex fixed, this is the identity automorphism e. An
automorphism of G can swap vertices a and c and leave the others alone.
This is the automorphism α = (a, c). Similarly, we can swap vertices b and
d while leaving a and c fixed. This results in the automorphism β = (b, d).
Finally, we can swap vertices a and c and swap vertices b and d. This results
in the automorphism αβ = (a, c)(b, d). It is easy to check that these are
the only automorphisms. Hence, Aut(G) is isomorphic to the Klein 4-group,
V4 = Z2 × Z2.

We can use the automorphism group to define a relationship between two
vertices inG. Let u, v ∈ V (G), vertex u relates to v if there exists φ ∈ Aut(G)
such that φ(u) = v. We claim that this is an equivalence relation.

(i) Reflexive: Note that e(u) = u for all u ∈ V (G), where e is the identity
automorphism.

(ii) Symmetric: If φ(u) = v, then φ−1(v) = u.
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(iii) Transitive: If φ(u) = v and σ(v) = w, then σ(φ(u)) = w.

Thus, the relationship is an equivalence relation. Like all equivalence
relations, this induces a partition the vertex set into equivalence classes.
These classes are usually called automorphism classes. If all of the vertices
of the graph are in the same automorphism class, then we say that the graph
is vertex transitive.

Some facts about the automorphisms of a graph.

Proposition 1.1 [13, 23] Let G be a graph.

(i) (Degree preserving) For all u ∈ V (G) and for all φ ∈ Aut(G), deg(u) =
deg(φ(u)).

(ii) (Distance preserving) For all u, v ∈ V (G) and for all φ ∈ Aut(G),
d(u, v) = d(φ(u), φ(v)).

(iii) The automorphism group of G is equal to the automorphism group of
the complement G.

Proof. (i) Let u ∈ V (G) with neighbors u1,...,uk. Let φ ∈ Aut(G). Since
φ preserves adjacency, it follows that φ(u1),...,φ(uk) are neighbors of φ(u).
Ergo, deg(φ(u)) ≥ k. If v /∈ {u1, ..., uk} is a neighbor of φ(u), then φ−1(v) is a
neighbor of u. Therefore, the neighbors of φ(u) are precisely φ(u1),...,φ(uk).
Ergo, deg(u) = deg(φ(u)).

(ii) Let u, v ∈ V (G) and let φ ∈ Aut(G). Suppose that the distance from
u to v is d(u, v) = d. Further, let u = u0, u1, ..., ud−1, ud = v be a shortest path
from u to v. Since φ preserves adjacency, φ(u) = φ(u0), φ(u1), ..., φ(ud−1), φ(ud) =
φ(v) is a path from φ(u) to φ(v). Thus, d(φ(u), φ(v)) ≤ d = d(u, v). Suppose
that φ(u), v1, ..., vm−1, φ(v) is a shortest path from φ(u) to φ(v). It follows
that u, φ−1(v1), ..., φ

−1(vm−1), v is a shortest path form u to v. It follows that
d(u, v) ≤ d(φ(u), φ(v)). Hence, we have equality.

(iii) Note that automorphisms preserve not only adjacency, but non-
adjacency as well. Hence, φ ∈ Aut(G) if and only if φ ∈ Aut(G). It follows
that Aut(G) = Aut(G).
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2 The Automorphism Group of Specific Graphs

In this section, we give the automorphism group for several families of graphs.
Let the vertices of the path, cycle, and complete graph on n vertices be

labeled v0, v1,..., vn−1 in the obvious way.

Theorem 2.1 (i) For all n ≥ 2, Aut(Pn) ∼= Z2, the second cyclic group.

(ii) For all n ≥ 3, Aut(Cn) ∼= Dn, the nth dihedral group.

(iii) For all n, Aut(Kn) ∼= Sn, the nth symmetric group.

Proof. (i) As in the proof of Proposition 1.1, any automorphism φ ∈ Aut(Pn)
must either map a vertex of degree one to a vertex of degree one. Thus either
φ(v0) = v0 and φ(vn−1) = v0 or φ(v0) = vn−1. In either case, the orbit of the
remaining vertices is precisely determined by their distance from v0. In the
first case, φ(vi) = vi for all i. This results in the identity automorphism. In
the second case, φ(vi) = vn−1−i for all i. Thus, Aut(Pn) ∼= Z2.

(ii) Consider the mapping ρ(vi) = vi+1, where the computation on the
indices is computed modulo n. Since vivi+1 is an edge in the graph, ρ is an
automorphism. If n is even, then consider the mapping τ(vi) = vn−1−i and
τ(vn−i−1) = vi for i = 0, 1, ..., n

2
− 1. If n is odd, then consider the mapping

τ(v0) = v0, τ(vi) = vn−i, and τ(vn−i) = vi for i = 1, ..., n−1
2
. In both cases,

vivi+1 and vn−1−ivn−2−i are both edges in Cn. Thus, τ is an automorphism.
Note that ρn = τ 2 = e and ρkτ = τρn−k. Hence ρ and τ generate the nth
dihedral group, Dn. Since we can think of Cn as a regular n-gon, we have
that Aut(Cn) ∼= Dn.

(iii) Since S1 is the trivial group, the result holds for n = 1. For the re-
mainder of the proof, let n ≥ 2. Let x and y be distinct vertices of Kn. Con-
sider the mapping φ(x) = y, φ(y) = x, and φ(v) = v for all other v ∈ V (Kn).
Since x and y are both adjacent to every vertex, φ is an automorphism of
Kn. Thus, every transposition of two vertices is an automorphism. Since the
set of all transpositions generates Sn, the result follows.

The complete bipartite graph Kn,m has V (Kn,m) = X ∪ Y , where X =
{x1, ..., xn}, Y = {y1, ..., ym}, and X ∩ Y = ∅. The edge set of this graph is
E(Kn,m) = {xiyj : i = 1, ..., n, j = 1, ..., m}.

Theorem 2.2 For the complete bipartite graph, Kn,m, where n ≥ m:
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(i) If n > m, then Aut(Kn,m) ∼= Sn × Sm.

(ii) If n = m, then Aut(Kn,m) ∼= S2
n ⋉ Z2.

Proof. By Theorem 2.1, Aut(Kn) ∼= Sn. By Proposition 1.1, it follows that
Aut(Kn) ∼= Sn. Thus, any automorphism of the form (xi, xj) or of the form
(yk, yℓ) is in Aut(Kn,m). Thus, Sn × Sm is a subgroup of Aut(Kn,m).

(i) Suppose that n > m. Since deg(xi) = m and deg(yj) = n, it follows
from the proof of Proposition 1.1 that there is no automorphism φ such that
φ(xi) = yj. Thus, Aut(Kn,m) ∼= Sn × Sm.

(ii) Suppose that n = m. Here, it is possible to map elements of X to
elements of Y . Since every element of X is adjacent to every element Y ,
if we map one element of X , then we must map every element of X must
be mapped to a distinct element of Y . Such a mapping will be its own
iverse. Thus, in addition to the automorphisms described in (i), we also have
automorphisms of the form

∏n

i=1(xi, yπ(i)), where π is a permutation on the
set {1, ..., n}. Thus, the automorphism group is generated by (xi, xj), (yk, yℓ),
and

∏n

i=1(xi, yi). Thus, the automorphism group is isomorphic to S2
n ⋉ Z2.

The double star is the tree with two adjacent non-leaf vertices x and y
such that x1, ..., xn are the leafs adjacent to x and y1, ..., ym are the leafs
adjacent to y. This graph is denoted Sn,m.

Theorem 2.3 For the double star Sn,m, where n ≥ m:

(i) If n > m, then Aut(Sn,m) ∼= Sn × Sm.

(ii) If n = m, then Aut(Sn,m) ∼= S2
n ⋉ Z2.

Proof. Note that any element of the set {x1, ..., xn} can be mapped to any
other element of the same set. Likewise, any element of the set {y1, ..., ym}
can be mapped to an element of {y1, ..., ym}. These permutations result in a
subgroup of Aut(Sn,m) that is isomorphic to Sn × Sm. If n 6= m, then x and
y have different degrees. Thus, these are the only automorphisms possible.
Thus, (i) holds.

If n = m, then we can map x to y. However, as their leaves will be
carried along in this mapping, each xi must be mapped to some yj. Thus, the
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group of permutations is generated by (xi, xj), (yk, yℓ), and (x, y)
∏n

i=1(xi, yi).
Thus, the automorphism group is isomorphic to S2

n ⋉ Z2.

The Petersen Graph is one of the most important graphs. In fact, en-
tire books have been written about the Petersen graph [16]. The Petersen
graph K(5, 2) is the graph where the vertex set is all 2-element subsets of
{1, 2, 3, 4, 5}. Two vertices are adjacent in K(5, 2) if and only if their 2-sets
are disjoint.

Theorem 2.4 For the Petersen graph K(5, 2), Aut(K(5, 2)) ∼= S5.

Proof. Let π ∈ S5. This induces a permutation on the 2-element subsets of
[5] that make up the vertex set. Namely, π(2)({x, y}) = {π(x), π(y)}. Clearly,
π(2) is a bijection on the vertex set. Further, {x, y} and {w, z} are disjoint
if and only if {π(x), π(y)} and {π(w), π(z)} are disjoint. Ergo, π(2) is an
automorphism. If σ is any other automorphism of the Petersen graph, then
σ must permute the 2-element subsets in such a way to preserve adjacency.
Thus, σ = π(2) for some π ∈ S5. Therefore, Aut(G(5, 2)) ∼= S5.

The Petersen graph is a special case of Kneser graphs. The Kneser graph
K(n, k) has as its vertex set all k-element subsets of {1, ..., n}. Two vertices
in K(n, k) are adjacent if and only if their k-sets are disjoint. Using a similar
argument as in Theorem 2.4, we can show that Aut(G(n, k)) is isomorphic to
the nth symmetric group Sn. For more details on this proof, refer to [3, 15].

Note that the Kneser graph is not what people call a “generalized Petersen
graph” in the literature. Usually, when mathematicians refer to a generalized
Petersen graph, they are referring to the family of graphs introduced by
Coxeter [8]. However, their name is due to Watkins [22]. The automorphism
group of the generalized Petersen graphs was determined in [12].

3 Cartesian Products

Recall that the Cartesian product of graphs G and H is the graph with
vertex set {(g, h) : g ∈ V (G), h ∈ V (H)}. Two vertices (g1, h1) and (g2, h2)
are adjacent if and only if either (i) g1 = g2 and h1h2 ∈ E(H) or (ii) h1 = h2
and g1g2 ∈ V (G). This graph is denoted G✷H1. For additional references

1The G✷H notation is consistent with West [24] and most of the literature. However,
Buckley and Lewinter [4] use the notation G×H for this same product.
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on Cartesian products, refer to [14, 17, 18, 21]. Note that this product can
be generalized to an arbitrary number of graphs.

Theorem 3.1 Let G and H be graphs. It follows that Aut(G)× Aut(H) is
a subgroup of Aut(G✷H).

Proof. Let φ ∈ Aut(G) and let θ ∈ Aut(H). Consider the mapping
ξ : V (G✷H) → V (G✷H) defined by ξ((g, h)) = (φ(g), θ(h)). We claim
that ξ is an automorphism of G✷H . Suppose that (g1, h1) and (g2, h2) are
adjacent in G✷H . If h1 = h2, then θ(h1) = θ(h2). Further, g1 and g2 would
be adjacent in G. It follows that φ(g1) and φ(g2) are adjacent in G. Since
ξ((g1, h1)) = (φ(g1), θ(h1)) and ξ((g2, h2)) = (φ(g2), θ(h2)), it follows that
ξ((g1, h1)) and ξ((g2, h2)) are adjacent in G✷H . A similar argument holds if
g1 = g2 and h1 is adjacent to h2 in H . Thus, ξ ∈ Aut(G✷H) and the result
follows.

A natural question is when Aut(G✷H) contains an element that is not
of the form described in Theorem 3.1. To do this, we need a bit more
terminology.A graph D is a divisor of a graph G if their exists a graph
H such that G ∼= D✷H . A graph P is prime if P has no divisor other than
itself and K1

2. Graphs G and H are relatively prime if they share no common
factor other than K1. With these terms in mind, we present results about
the automorphism group of Cartesian products.

Theorem 3.2 [21, 23] (i) Every connected graph G can be written as G ∼=
G1✷ · · ·✷Gk, where the Gi are prime graphs. This factorization is unique,
up to permutations on the prime factors3. (ii) If G is a connected graph,
then Aut(G) is generated by Aut(Gi) and the transpositions interchanging
isomorphic prime divisors. (iii) In particular, if the Gi are relatively prime
connected graphs, then Aut(G) is the direct product of the Aut(Gi) over all
i.

The comment in Theorem 3.2 about “transpositions interchanging iso-
morphic prime divisors” deserves a bit more explanation. Suppose that the
connected graph G has prime factorization G = G1✷ · · ·✷Gn, where Gi and

2Examples of prime graphs include trees, odd cycles, and complete graphs.
3The factorization may not be unique for disconnected graphs. As an example, note

that (K1 ∪K2 ∪K
2

2 )✷(K1 ∪K
3

2 ) is isomorphic to (K1 ∪K
2

2 ∪K
4

2)✷(K1 ∪K2).



8

Gj are isomorphic prime divisors for some i 6= j. Thus, there is isomor-
phism ψ : Gi → Gj . For all k ∈ {1, ..., |V (Gi)|}, suppose that vi,k ∈ V (Gi)
and vj,k ∈ V (G2) such that ψ(vi,k) = vj,k. Then there is an automorphism
ζ ∈ Aut(Gi✷Gj) such that ζ = (vj,1, vi,1)...(vj,|V (G2)|, vi,|V (G1)|). In other
words, ζ “swaps” the isomorphic prime factors Gi and Gj.

By Theorem 3.2 (iii), if G and H are relatively prime, then Aut(G✷H) ∼=
Aut(G)×Aut(H). Hence, all automorphisms are of the form described in the
proof of Theorem 3.1. An immediate consequence of Theorem 3.2 is given in
the following corollary.

Corollary 3.3 For the hypercube Qn, Aut(Qn) ∼= Z
n
2 ⋉ Sn.

4 Frucht’s Theorem

In the previous sections, we discussed the automorphism group of various
graphs. In this section, we consider an alternative problem proposed by
König in 1936 [19]. Suppose that we are given a finite group Γ4. Our goal is
to find a graph G such that Aut(G) ∼= Γ. The result was proven by Frucht in
1939 [10]. The proof of Frucht’s Theorem involves use of the Cayley graph
(introduced in 1878 [5]). Recall that the Cayley digraph Cay(Γ, S) has a
vertex for each element of the group Γ. Let x, y ∈ V (Cay(Γ, S). There is a
arc pointing from x to y if and only if there exists an g ∈ S such that xg = y.
Traditionally, the different generators are represented by different colored
arcs. For more information on the Cayley digraph, refer to the relevant
section in Fraleigh [9]. Our treatment of Frucht’s Theorem will follow that
of Chartrand, Lesniak, and Zhang [6].

We begin with some terminology. Let φ ∈ Aut(Cay(Γ, S)). We say that
φ is color-preserving if for every arc (x, y) in Cay(Γ, S), the arcs (x, y) and
(φ(x), φ(y)) have the same color. The following proposition is straightforward
to prove using the techniques in the senior-level algebra course.

Proposition 4.1 The set of color-preserving automorphisms is a subgroup
of Aut(Cay(Γ, S)).

A useful characterization of color-preserving automorphisms is given in
the next theorem.

4Fraleigh [9] uses G to denote a group. However, we have been using G to denote a
graph. Hence to keep levels of abstraction sufficiently clear, we use Γ to denote the group.
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Theorem 4.2 Let Γ be a finite group with generating set S. Let φ be a
permutation of V (Cay(Γ, S)). The permutation φ is a color-preserving au-
tomorphism of Cay(Γ, S) if and only if φ(gh) = (φ(g))h for every g ∈ Γ and
h ∈ S.

The significance of color-preserving automorphisms is given in the next
theorem.

Theorem 4.3 Let Γ be a finite group with generating set S. The group of
color-preserving automorphisms of Cay(Γ, S) is isomorphic to Γ.

Proof. Let Γ = {g1, ..., gn}. For i = 1, ..., n, define φi : V (Cay(Γ, S)) →
V (Cay(Γ, S)) by φi(gs) = gigs. Since Γ is a group, φi is one-to-one and onto.
Let h ∈ S. Then for each i, 1 ≤ i ≤ n, and for each s, 1 ≤ s ≤ n,

φi(gsh) = gi(gsh) = (gigs)h = φi(gs)h.

Thus, φi is a color-preserving automorphism of Cay(Γ, S) by Theorem 4.2.
Let φ be an arbitrary color-preserving automorphism of Cay(Γ, S). Let

e = g1 be the identity element of Γ. Suppose that φ(g1) = gr. Let gs ∈ Γ.
By definition, we can write gs as a product of generators. In other words,
gs = h1...ht, where hj ∈ S for j = 1, ..., t. Ergo,

φ1(gs) = φ(g1h1...ht) = φ(g1h1...ht−1)ht

= φ(g1h1...ht−2)ht−1ht = · · · = φ(g1)h1...ht = grgs.

Thus φ = φr.
We now show that the mapping θ defined by θ(gi) = φi is an isomorphism

from Γ to the color-preserving automorphisms of Cay(Γ, S). Since θ is one-
to-one and onto, we need only show that it is a homomorphism. Let gigj = gk.
Then θ(gigj) = θ(gk) = φk and θ(gi)θ(gj) = φiφk. It follows that

φk(gs) = gkgs = (gigj)gs = gi(gjgs) = φi(gjgs) = φi(φj(gs)) = (φiφj)gs.

The idea of the construction is rather simple. Namely, we replace each arc
in the Cayley graph with a undirected graph that still indicates the direction
of the original arc. This can be done by replacing the arc with a path on four
vertices and appending a path to one of the center vertices of the path. Such
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−k −j

−1 i

−i 1

j k

Figure 2: Cayley graph Cay(Q8, {i, j})

a graph only admits the identity automorphism, so no new symmetries are
introduced. In the case of involutions (represented by undirected edges in the
Cayley graph) can be replaced with a path, with a single subpath appended
onto it. Different colors of arcs can be differentiated by appending different
lengths of paths. In other words, we preserve the original symmetries of the
Cayley graph without introducing any new symmetries.

Theorem 4.4 (Frucht’s Theorem [10]) Given a finite group Γ, there exists
a graph G such that Aut(G) is isomorphic to Γ.

Proof. Let Γ be a finite group and let S = {g1, ..., gk} be a generating set
of Γ. Suppose that for some x, y ∈ Γ and gi ∈ S, we have that xgi = y.
Thus, (x, y) is an arc “colored” gi in Cay(Γ, S). By Theorem 4.3, the color-
preserving automorphisms of Cay(Γ, S) is isomorphic to Γ. To transform
Cay(Γ, S) to the required graph, we delete the arc (x, y) and replace it with
the path x, ux,y, u

′
x,y, y. At u′x,y, we construct a path P ′

gi
of length i. Each

path corresponding to “color” gi is distinguished by the lengths of the subpath
P ′
gi
. The differing lengths of the paths appended to ux,y and u

′
x,y preserves the

direction of the arc (x, y) in the Cayley graph. This construction is repeated
for every arc in Cay(Γ, S). Denote the resulting graph G.

We claim that Aut(G) is isomorphic to Γ. Let φ ∈ Aut(G) and u ∈ V (G).
If u is an endpoint of a subpath of the form P ′

gi
, then φ(u) is also an endpoint

of a subpath of the form P ′
gi
. A similar argument holds for all vertices along

these subpaths. Since these edges of the color gi in G corresponds to the
generator gi in Γ, it follows that every automorphism φ ∈ Aut(G) is an
element of Γ. Thus, Aut(G) ∼= Γ.

Example 4.5 As an example of this construction, consider the quaternion
group Q8 = {±1,±i,±j,±k : i2 = j2 = k2 = ijk = −1}. A generating
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i →

j →

Figure 3: Replacements for Frucht’s Theorem

set for this group is S = {i, j}. In Figure 3, we give the Cayley graph,
Cay(Q8, {i, j}). For emphasis, we have colored the arcs in the graph corre-
sponding to i and j blue and red, respectively. We replace the arcs as shown
in Figure ??. The result is the graph shown in Figure 4.

Example 4.6 Consider the Alternating group A4. This is the group of order
12 consisting of all even permutations on the set {1, 2, 3, 4}. This group
is generated by (1, 2, 3) and (1, 2)(3, 4). We represent right multiplication
by (1, 2, 3) as a blue arc. We represent right multiplication by (1, 2)(3, 4)
as a red edge. Note that since (1, 2)(3, 4) is its own inverse, the red edges
are undirected. The resulting Cayley graph is illustrated in Figure 55 When
replacing our arcs, we replace the blue arcs as above. In the case of the red
edges, we can simply replace them with single edges as there is no orientation
to preserve6. The resulting graph is given in Figure 6.

It turns out that graphs are rather pliable things. For this reason, Frucht’s
Theorem still holds, even if we restrict our attention to graphs that have a
specified properties. Examples of such results include:

(i) Given a finite group Γ, there is a k-regular graph G such that Aut(G) ∼=
Γ [11, 20].

(ii) Given a finite group Γ, there is a k-vertex-connected graph G such that
Aut(G) ∼= Γ [20].

5Note that this is the same Cayley graph that appears on the cover of Fraleigh [9].
6In the case where more than one of our generators is an involution, we can replace

each involution with a symmetric graph. However, each graph must be distinct so that we
can distinguish the generators.
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Figure 4: A graph whose automorphism group is isomorphic to Q8

Figure 5: The Cayley graph Cay(A4, {(1, 2, 3), (1, 2)(3, 4)})
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Figure 6: A graph whose automorphism group is isomorphic to A4.
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(iii) Given a finite group Γ, there is a k-chromatic graph G such that
Aut(G) ∼= Γ [20].

Note that any of the Frucht-type constructions will produce a graph that
has many more vertices than elements in the target group. Thus, a natural
question is the following: Given a finite group Γ, find a graph G such that:

(i) The automorphism group of G is isomorphic to Γ.

(ii) Among all graph whose automorphism group is isomorphic to Γ, G has
the minimum number of vertices.

5 Related Ideas

There are several ideas related to the automorphism group. Any of these
ideas could be the basis for a entire supplement. This being the case, we
only introduce these ideas and provide the relevant reference.

In 1996, Albertson and Collins [1] introduced the distinguishing number
of a graph. For the distinguishing number, we label the vertices of G with
(not-necessarily distinct) elements of {1, ..., k}. The goal is to do this in such
a way that no element of Aut(G) preserves all of the vertex labels. However,
we wish to do this in such a way that we use the minimum number of labels as
possible. This minimum number is the distinguishing number. For example,
we can label the first vertex of the path 1 and the remaining vertices 2.
The first vertex is clearly distinguished as it is the only one labeled 1. The
remaining vertices are also distinguished by their distance from the unique
vertex labeled 1. Thus, the distinguishing number of the path is 2.

In 2006, this was followed by a paper by Collins and Trenk [7] that in-
troduced the distinguishing chromatic number of a graph. The idea is that
we assign numbers to the vertices in order to break the symmetries of the
graph. However, if two vertices are adjacent, then they must receive different
labels. Again, the goal is to use the minimum number of labels possible. This
minimum number is the distinguishing chromatic number. For example, the
distinguishing chromatic number of the path Pn is 2 when n is even and 3
when n is odd.

In 2017, I submitted a paper [2] that introduced the notion of a palin-
dromic labeling. A palindromic labeling is a bijection f : V (G) → {1, ..., |V (G)|}
such that if uv ∈ E(G), then there exists x, y ∈ V (G) such that xy ∈ E(G),
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Figure 7: A palindromic labeling on a graph

f(x) = |V (G)| + 1 − f(u), and f(y) = |V (G)| + 1 − f(v). An example of a
palindromic labeling on a graph is given in Figure 7. A graph that admits a
palindromic labeling is a palindromic graph. Examples of palindromic graphs
include paths, cycles, and complete graphs. Equivalently, a graph G is palin-
dromic if there exists φ ∈ Aut(G) such that φ2 is the identity and φ has at
most one fixed point.
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product graphs. Discrete Mathematics and its Applications (Boca Ra-
ton). CRC Press, Boca Raton, FL, second edition, 2011. With a foreword
by Peter Winkler.

[15] Frank Harary and Edgar M. Palmer. Graphical enumeration. Academic
Press, New York-London, 1973.

[16] D. A. Holton and J. Sheehan. The Petersen graph, volume 7 of Aus-
tralian Mathematical Society Lecture Series. Cambridge University
Press, Cambridge, 1993.
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