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1 Introduction

The game of cops and robbers on graphs is a combinatorial game introduced
independently by Quilliot [20, 21, 22] and by Nowakowski and Winkler [17].
This is an example of a graph searching game (see [2, 7, 10, 18, 19] for a
more on such games). Our treatment of the game of cops and robbers will
be similar to the survey articles by Aigner and Fromme [1] and Hahn [11] as
well as the book by Bonato and Nowakowski [5]. For more information on
combinatorial games, refer to [3, 8, 23, 24]. For more information on general
games of strategy, refer to [26, 27, 28].

There are a number of variations on the game of cops and robbers on
graphs. However, we will concerned with the original version. In this version,
a graph G is given. There are two players, a cop and a robber. The cop
chooses a vertex C. Then, the robber chooses a vertex, R. Players move
alternate moves, beginning with the cop. A move consists of staying at one’s
present vertex or moving to an adjacent vertex. Both players have perfect
information. In other words, each player knows the position and moves of
the other player at all times. The cop wins if manages to occupy the same
vertex as the robber. This is referred to as a capture. The robber wins if
he is able to avoid this forever. Note that based on the above definition, we
only consider connected graphs.
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Using the Fundamental Theorem of Combinatorial Games [27] (this is
also known as von Neumann’s Theorem [26]), either the cop or the robber
has a winning strategy on any given graph. A winning strategy is one of the
options available to the player that will guarantee victory for that player,
regardless of the actions of their opponent. Graphs in which the cop has a
winning strategy are called cop-win graphs. Conversely, graph in which the
robber has a winning strategy are called robber-win graphs.

2 Cop-win graphs

The goal of this section is to classify those graphs which are cop-win graphs.
We begin with some motivating examples.

Proposition 2.1 If G is a graph with a universal vertex, then G is a cop-win
graph.

Proof. Let G be a graph with universal vertex u. By definition, u is adjacent
to every vertex in G. Thus, on their first turn, the cop moves to the vertex
occupied by the robber. Hence, the cop captures the robber on their first
move.

Theorem 2.2 If G is a tree, then G is a cop-win graph.

Proof. Let G be any tree. The cop chooses any vertex initially. Since
the deletion of any non-leaf vertex disconnects a tree, this separates the
graph into two components. The robber’s initial location must be in one of
these components. Let the component occupied by the robber be denoted
R. On each turn, the cop moves towards the robber. This again separates
the graph into two components. More importantly, the number of vertices
in R has decreased by one. Hence, on each subsequent move by the cop, the
number of options available to the robber decreases by at least one. Ergo,
the cop will eventually capture the robber.

Theorem 2.3 If G is a cycle of length at least 4, then G is a robber-win
graph.
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Proof. Let G be a cycle of length n, where n ≥ 4. For purposes of exposition,
we label the vertices of the cycle with the integers modulo n. Since the cycle
is vertex transitive, we may assume that the cop chooses vertex 0 for their
starting position. We need only give the robber’s winning strategy. Suppose
that the robber chooses vertex 2 initially. If the cop moves to vertex i, then
the robber moves to vertex i + 2 (mod n). Notice that this strategy allows
the robber to maintain a distance of 2 away from the cop. Hence, the robber
can evade pursuit forever.

Corollary 2.4 Suppose that G is a graph with a vertex induced subgraph H,
where H is a cycle of length at least 4. It follows that G is a robber-win
graph.

Proof. Suppose that the cop takes vertex C on their first turn. For their
initial position, the robber takes any vertex v on H such that the distance
between C and v is at least 2. The robber then moves (or remains stationary)
in such a way that the distance between them and the cop remains at least 2.
Hence, the robber has a winning strategy for the same reasons as Theorem
2.3.

In Theorem 2.2, the ability of the cop to separate the graph into smaller
components was crucial to their winning strategy.This notion is formalized
with the idea of a retract. Let H be a vertex induced subgraph of a graph
G. Let f be a function mapping V (G) onto V (H) such that if xy ∈ E(G),
then f(x)f(y) ∈ V (H) (in other words, f is a graph homomorphism). The
function f is a retraction of G onto H if f(x) = x for all x ∈ V (H). If such
a function exists, then we say that H is a retract of G.

At this point, an example is order. Consider the graph given in Figure
1. We define the function f : V (G) → V (H) as follows f(a) = f(b) = b,
f(c) = c, f(d) = d, and f(e). Clearly, If x ∈ V (H), then f(x) = x. We need
only check that f is a graph homomorphism. Since only a is affected by f ,
we need only check the edges ab and ae. Note that f(a)f(e) = be ∈ E(H).
Further, f(a)f(b) = bb ∈ E(H) (it is convenient in such cases to assume that
every vertex has a loop). Thus, the graph H is a retraction of G.

Theorem 2.5 [4] Let G be a cop-win graph. If H is a retract of G, then H
is a cop-win graph.
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Figure 1: A graph and its retraction
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Figure 2: A counter-example to the converse of Theorem 2.5

Proof. Suppose that the cop has a winning strategy on G. Let f : V (G) →
V (H) be a retraction on G. Consider two parallel games. The first game is
played on G, while the second is played on H . In G, the cop plays as usual.
In H , the cop plays as an image of the cop in G. In other words, if the cop
moves from x to y in G, then the cop moves from f(x) to f(y) in H . Since
f preserves edges, this is well-defined.

We claim that this gives a winning strategy on H . Suppose that the
robber is at vertex R, while the cop is at vertex C. The cop plays on G with
R restricted to H . Suppose that the cop is about to win in G. It must be
that R and each neighbor v ∈ V (H) (as well as the neighbors of R in G−H)
are adjacent to C. But then the edge RC becomes the edge Rf(C) under the
retraction and vC becomes vf(C). Therefore, the robber loses in the game
played in H in the next round.

A natural question is to whether the converse of Theorem 2.5 is true.
In other words, suppose that H is cop-win graph and H is a retraction
of G. Will G always be a cop-win graph? Consider the graph given in
Figure 2. We obtain the graph P4 with the retraction f(v) = f(u1) = u1,
f(w) = f(u2) = u2, f(u3) = u3, and f(u4) = u4. Note that H is a tree, so it
is a cop-win graph. However, G is robber-win because it contains an induced
C4.
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Figure 3: A cop-win ordering on a graph

Another useful idea is that of a corner. Consider the graph G given in
Figure 1. Suppose that the robber is at vertex a on this graph while the
cop is at vertex b. Recall that the closed neighborhood of a vertex x in G is
the set N [x] = {w : xw ∈ E(G)} ∪ {x}. In Figure ??, every vertex in N [a]
is in N [b]. Thus, the cop can win on their next move, regardless of the the
actions of the robber. So, the robber is cornered at a. To formalize, a vertex
u is a corner of a graph G if there is a vertex v such that N [u] ⊆ N [v]. In
this case, the vertex v covers the vertex u. Note that every leaf of a tree is
a corner. Likewise, a universal vertex covers every other vertex in a graph.

Lemma 2.6 [17] If G is a cop-win graph, then G contains at least one cor-
ner.

Proof. Let G be a cop-win graph. Consider the second to last move of
the cop. Further, suppose that the robber is at vertex R while the cop is at
vertex C. The robber could remain at vertex R, so vertex C must be adjacent
to vertex R. Likewise, the robber could move to any neighbor of R. Hence,
C must be adjacent to every neighbor of R. In other words, N [R] ⊆ N [C].
Ergo, R is a corner by definition.

Corners play a vital role in our goal of classifying the cop-win graphs. A
graph is dismantlable if some sequence of deleting corners results in a single
vertex. Note that every tree is dismantlable, just repeatedly delete leaves.
Observe that such graphs have a recursive structure which can be defined as
a cop-win ordering on a graph G of order n. Such an ordering is a labeling of
the vertices of G using the elements of {1, ..., n} in such a way that for each
i < n, the vertex i is a corner in the subgraph induced by {i, i + 1, ..., n}.
This labeling indicates the order in which vertices are deleted, namely in
ascending order of their labels. Figure 3 gives an example of a cop-win graph
and its associated cop-win ordering.

We are now prepared to proceed with our characterization of cop-win
graphs.



6

Theorem 2.7 A graph is cop-win if and only if it is dismantlable.

Proof. Let G be a cop-win graph on n vertices. We proceed by induction
on n. Note that when n = 1, G is only a single vertex. So, the claim holds
trivially. Assume that for some n ≥ 1, all cop-win graphs on n vertices are
dismantlable. Let G′ be a cop-win graph on n + 1 vertices. By Lemma 2.6,
G′ has a corner u which is covered by vertex v. Note that G′ − {u} is a
retract of G′. Hence, G′ − {u} is a cop-win graph by Theorem 2.5. Hence,
the result follows by the Principle of Mathematical Induction.

Suppose that G is a dismantlable graph of order n. Again, we proceed by
induction on n. If n = 1, then G is trivially a cop-win graph. Assume that
for some n ≥ 1, that if G is a dismantlable graph on n vertices, then G is
cop-win. Lt G′ be a dismantlable graph on n + 1 vertices. By definition, G′

has a corner u which is covered by v. Note that G′ − {u} is a dismantlable
graph on n vertices. Hence, it is cop-win by inductive hypothesis. It suffices
to give the cop’s winning strategy on G′. The cop plays on G − {u} using
his winning strategy there. However, whenever the robber moves to u, then
cop moves as though the robber moves to v. This is well-defined because
uv ∈ E(G′). Think of the vertices of G′−{u} as images under the retraction
f which maps u to v and fixes all other vertices. Now the cop eventually
captures the image of the robber f [R] with his winning strategy on G′−{u}.
If R = f [R], then the robber is captured. Otherwise, the robber is on u with
the cop on v. Since v covers u, the cop wins on the next turn.

3 The cop number of a graph

As shown in the previous section, the cop-win graphs have been classified.
Thus a natural question is to determine the minimum number of cops that
will guarantee that the robber is captured on graph G, assuming perfect
strategy. This minimum number, called the cop number of G, was introduced
by Berarducci and Intrigila [4]. The cop number of G is denoted c(G). Our
goal in this section is to give several results regarding the cop number. When
considering the cop number, it is important to note the following:

(i) Any k-subset of the cops can move on their turn, while the rest remain
stationary.
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(ii) All k cops move simultaneously on their turn.

(iii) Any number of cops may occupy a single vertex.

Note that for all graphs, we could simple place a cop on every vertex.
Hence c(G) ≤ n for all graphs G on n vertices. We can obtain a less trivial
upper bound using the domination number of G. Recall that S ⊆ V (G) is a
dominating set of G if for every v ∈ V (G), either v ∈ S or v is adjacent to a
vertex in S (see [12] for more on domination in graphs). The cardinality of
the minimum dominating set on G is denoted γ(G).

Proposition 3.1 Let G be a graph. The cop-number of G satisfies c(G) ≤
γ(G).

Proof. Let S be a minimum dominating set of G. Initially, the cop takes all
vertices in S. By definition of S, every vertex of G is either in S or adjacent
to a vertex in S. Hence, regardless of where the robber starts, they will be
captured on the first turn. Ergo, at most |S| = γ(G) cops are sufficient to
catch the robber.

The following result is obvious based on our definitions.

Proposition 3.2 The graph G is cop-win if and only if c(G) = 1.

Likewise, we can determine the cop number for cycles.

Corollary 3.3 Let Cn be a cycle on n vertices, where n ≥ 4. The cop
number for Cn is c(Cn) = 2.

Proof. By Theorem 2.3, one cop is insufficient to catch the robber. Thus
we need only give the strategy for two cops to capture the robber. The cop
chooses vertices 0 and ⌊n/2⌋. This separates the cycle into two components.
On their turn, the robber chooses a vertex in one of these two components.
We denote this component R. On each turn, the both cops move towards the
robber. This reduces the number of vertices in R by two. Hence, one each
turn, the robber has two less options. Ergo, the cops will eventually capture
the robber.

The proof of the following theorem is the same as in Theorem 2.5.

Theorem 3.4 [4] If H is a retraction of G, then c(H) ≤ c(G).
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A similar, yet more complicated bound is given below.

Theorem 3.5 [4] If H is a retract of G, then

c(G) ≤ max{c(H), c(G−H) + 1}.

Proof. Let m = max{c(H), c(G − H) + 1}. Let f : V (G) → V (H) be
a retraction. Since m ≥ c(H), the cops play by using the cops’ winning
strategy in H and capture the robber’s image f [R] in H . These moves also
occur in G, since f is a graph homomorphism. So, if the robber is in H , then
R = f [R] and the cops win. It follows that c(G) ≤ c(H).

Otherwise, the robber is in G−H . One cop protects H by occupying the
image f [R]. Since f is a homomorphism, this is always possible. Thus, the
robber must remain in G−H to avoid capture. At most c(G−H) additional
cops are needed to capture the robber in G−H . Thus, c(G) ≤ c(G−H)+1.

Recall that a graph is planar if it can be drawn in the plane in such a
way that no edges cross. By Kuratowski’s Theorem [13], a graph is planar if
and only if it contains no subdivision of K3,3 or K5 as a subgraph.

Theorem 3.6 [1] If G is a planar graph, then c(G) ≤ 3.

Previously, we have had only upper bounds. In practice, lower bounds
are often more useful as they show that we need at least a certain number
to guarantee the robber’s capture. One such bound is due to Aigner and
Fromme [1].

Theorem 3.7 [1] If G is a graph which has no C3 or C4 subgraph, then
c(G) ≥ δ(G).

Proof. Let δ(G) = d and suppose that δ(G) − 1 cops play the game. Let
C = {v1, ..., vd−1}. Since δ(G) ≥ d − 1, there is a w ∈ V (G) − C. Suppose
that the degree of w is ℓ. Thus, we can assume that the neighborhood of w
is {v1, ..., vk, w1, ..., wℓ−k}, where wi /∈ C. By definition ℓ ≥ d and k ≤ d− 1.
This implies that ℓ − k ≥ 1. Note that wi and wj have w as a common
neighbor. If wiwj ∈ E(G), then G has a C3 subgraph. Further, if wi and
wj have a common neighbor other than w, then G has a C4 subgraph. Since
G has no C3 or C4 subgraph, it follows that N [wi] ∩ N [wj ] = {w} for all
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1 ≤ i < j ≤ ℓ − k. If C was a dominating set for G, then each of the
N(wi) would have to contain at least one vj, where j ≥ k + 1. By the above
argument, this would give us at least ℓ − k vertices Taking these vertices
together with v1,...,vk would give us at least ℓ ≥ d total vi. However, this
contradicts there being only d− 1 vi.

Suppose that the cop takes vertices {c1, ..., cd−1} initially. By the previous
paragraph, the robber is able to place himself on a vertex r that is not equal
to nor adjacent to any of the ci. Since G has no C3 or C4 subgraph, after
every move of the cop, at most d− 1 neighbors of R are occupied by cops or
adjacent to to them. Hence, the robber is able to move to the free neighbor.
Thus, at least δ(G) cops are necessary to capture the robber.

To illustrate the utility of Theorem 3.7, we consider the Petersen graph
shown in Figure 4.

Example 3.8 The cop-number of the Petersen graph is c(G) = 3.

Solution. Note that the Petersen graph G has no C3 or C4 subgraph and
has δ(G) = 3. By Theorem 3.7, c(G) ≥ δ(G) = 3. We now show that three
cops are sufficient to catch the robber on the Petersen graph. Suppose that
the cop takes vertices c, d, and f initially. The robber must take either g
or j. Without loss of generality, suppose that R = g. The cop makes the
following moves: c → b, d → e, and f → i. The cop now controls two
of the neighbors of g. Hence, the robber is forced to move to the remaining
neighbor j. However, the cop controls a neighbor of j, hence they will capture
the robber on the next turn. ✷

We now give several results regarding the cop number for Cartesian prod-
ucts of graphs.

Theorem 3.9 [25] Let G and H be connected graphs. The cop number for
the Cartesian product G✷H satisfies

c(G✷H) ≤ c(G) + c(H).

Proof. Let V (G) = {x1, ..., xp} and V (H) = {y1, ..., yq}. Let Gh denote the
copy of G induced by {(g1, h), ..., (gp, q)}. Similarly, let Hg be the copy of
H induced by {(g, h1), ..., (g, hq)}. Suppose that c(G) = m and c(H) = n.
Moreover, the (not necessarily distinct) vertices xi1 ,...,xim are the starting
position of the cops for their winning strategy on G. Likewise, the (not
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Figure 4: The Petersen graph

necessarily distinct) vertices yj1,...,yjq denote the starting position of the
cops for their winning strategy on H . We want to show that m + n cops
are sufficient to capture the robber on the graph G✷H .

The cop begins by placing n cops on the vertices (xi1 , yj1), (xi1 , yj2),...,(xi1 , yjn)
on the copy Hxi1

and begins his winning strategy for H on this copy. Like-
wise, the cop places one additional cop on each copy of H . This allows his to
catch at least the second coordinate of the robber on G✷H . If the robber is
not in Hxi1

, then from this moment forward the cop stays in Hxi1
. This cop

“shadows” the robber by going to the vertex (xi1 , yr) whenever the robber
goes to vertex (xi, yr).

The cop repeats this procedure on the copies Hxi2
, Hxi3

,...,Hxim
. At this

point, the cop has achieved a position in which he has m cops placed in the
vertices (xi1 , yr), (xi2 , yr),...,(xim , yr). Meanwhile, the robber is in a vertex
(xi, yr). Denote the m cops in the vertices (xi1 , yr), (xi2 , yr),...,(xim , yr) by
C1,...,Cm. Denote the remaining n cops by C ′

1
,...,C ′

n.
From now on, whenever the robber’s move changes the second coordinate

of the vertex, so will the cops C1,...,Cm. These cops will always change their
second coordinate in such a way that they all stay in the same copy Gyt of
G as the robber. If the robber in Gyr changes his first coordinate, the cop
instead moves the cops C1,...,Cm according to the winning strategy for G.
Notice that once placed, the cops C1,...,Cm and robber always have the same
second coordinate.

If the robber stays in a single copy Hxi
of H long enough, then the cops

C ′

1
,...,C ′

n will move into Hxi
by continually changing their first coordinate to

match that of the robber. At this point, they will either catch the robber on
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Hxi
by applying the winning strategy of H to this copy. Otherwise, they will

force him to move to another copy of H . In other words, they will force him
make a move on G. In either case, m + n cops are sufficient to capture the
robber on G✷H .

Maamoun and Meyniel [15] gave a result for the Cartesian product of
trees.

Theorem 3.10 [15] Let T1,...,Tk be trees. The cop number for the Cartesian
product is given by

c
(

✷
k
i=1

Ti

)

=

⌈

k + 1

2

⌉

.

A similar result about cycles was given by Neufeld and Nowakowski [16].

Theorem 3.11 [16] Let C1,...,Ck be cycles of length at least 4. The cop
number for the Cartesian product is given by

c
(

✷
k
i=1

Ci

)

= k + 1.

They also proved a result regarding the Cartesian product of a combina-
tion of trees and cycles.

Theorem 3.12 [16] Let C1,...,Ck be cycles and G = ✷
k
i=1

. Let T1,...,Tj be
trees and H = ✷

j
i=1

. The cop number for the Cartesian product is given by

c(G✷H) = k +

⌈

j + 1

2

⌉

.

One of the most important open problems in this area is known as
Meyniel’s Conjecture. This conjecture first appeared in a paper by Frankl
[9] based on a personal communication with Meyniel.

Conjecture 3.13 (Meyniel’s Conjecture [9]) Let G be a connected graph on
n vertices. If n is sufficiently large, there is a constant d > 0 such that
c(G) ≤ d

√
n.

There have been several attempts to prove Meyniel’s Conjecture. Most of
these attempts either prove an different upper bound or show that Meyniel’s
Conjecture holds for a particular class of graphs. For years, the best upper
bound was given in Frankl’s paper.
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Theorem 3.14 [9] Let G be a connected graph on n vertices. If n is suffi-
ciently large, there is a constant d > 0 such that

c(G) ≤ d
n log(log n)

log(n)
.

An improved bound was given by Chiniforooshan in 2008 [6].

Theorem 3.15 [6] Let G be a connected graph on n vertices. If n is suffi-
ciently large, there is a constant d > 0 such that

c(G) ≤ d
n

log(n)
.

One of the results about graph classes is given below.

Theorem 3.16 [14] If G is a graph on n vertices with diameter 2, then

c(G) ≤ 2
√
n− 1.
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