Decompositions and Graceful Labelings (Supplemental Material for Intro to Graph Theory)

Robert A. Beeler*

December 17, 2015

1 Introduction

A graph decomposition is a particular problem in the field of combinatorial designs (see Wallis [22] for more information on design theory). A graph decomposition of a graph H is a partition of the edge set of H. In this case, the graph H is called the host for the decomposition. Most graph decomposition problems are concerned with the case where every part of the partition is isomorphic to a single graph G. In this case, we refer to the graph G as the prototype for the decomposition. Further, we refer to the parts of the partition as blocks.

As an example, consider the host graph Q_{3} as shown in Figure 1. In this case, we want to find a decomposition of Q_{3} into isomorphic copies of the path on three vertices, P_{3}. We label the vertices of P_{3} as an ordered triple (a, b, c). where $a b$ and $b c$ are the edges of P_{3}. The required blocks in the decompositions are $(0,2,4),(1,0,6),(1,3,2),(1,7,5),(3,5,4)$, and $(4,6,7)$.

Usually, the goal of a combinatorial design is to determine whether the particular design is possible. The same is true for graph decompositions. Namely, given a host graph H and a prototype G, determine whether there exist a decomposition of H into isomorphic copies of G. Often, this is a difficult problem. In fact, there are entire books written on the subject (for

[^0]

Figure 1: A P_{3}-decomposition of a Q_{3}
example, see Bosák [1] and Diestel [5]). Because of the difficulty of the problem, most researchers are only concerned with case where H is the complete graph on v vertices. This special case is often referred to as a graphical design. Note that we are using he variable v here because v is traditionally used to denote the number of treatments or varieties in a combinatorial design.

Even when we restrict our attention to the complete graph K_{v} (or more generally, λK_{v} where each edge of the complete graph has been replaced by an edge of multiplicity λ), progress in this area has often been slow. Results often proceed at a rate of one graph family at a time (sometimes only a single graph at a time). The survey articles written by Chee [3] and Heinrich [10] are a testament to the number of individual researchers who have contributed to this area of mathematics.

Because of the difficulty of the problem, we will be concerned with only a few elementary results.

2 Necessary conditions

As mentioned above, it is often difficult to determine whether a G-decomposition of H exists. However, there are a few elementary theorems that provide necessary conditions for the existence of a G-decomposition of H. Such theorems are important because if the graphs G and H violate these results, then we know immediately that there is no G-decomposition of H.

Theorem 2.1 A necessary condition for the existence of a G-decomposition of H is that $|E(G)|$ divides $|E(H)|$.

Proof. Suppose that such a decomposition exists. Then the edge set of H can be partitioned into b blocks of cardinality $|E(G)|$. Thus, $b|E(G)|=|E(H)|$.

Hence, $|E(G)|$ divides $|E(H)|$.
A natural question with any necessary condition is whether it is also sufficient. In other words, if $|E(G)|$ divides $|E(H)|$, then are we guaranteed the existence of a G-decomposition of H ? As an example, consider $H=K_{6}$ and $G=K_{3}$. Note that $\left|E\left(K_{6}\right)\right|=15$ and $\left|E\left(K_{3}\right)\right|=3$. However, K_{6} is a regular graph of degree 5 . Whereas K_{3} is regular of degree 2 . So there is a problem when K_{3}-blocks meet at a single vertex of K_{6}. This idea is generalized in the following theorem.

Theorem 2.2 Suppose that G is regular graph of degree r. A necessary condition for the existence of a G-decomposition of a graph H is that r divides $\operatorname{deg}(v)$ for all $v \in V(H)$.

Proof. Suppose that such a decomposition exists. In this decomposition, suppose that $b_{i} G$-blocks meet at $v_{i} \in V(H)$. Each of these blocks contain r of the edges incident with v_{i}. Thus, $\operatorname{deg}\left(v_{i}\right)=r b_{i}$. Ergo, r must divide $\operatorname{deg}(v)$ for all $v \in V(H)$.

In general, this is still not sufficient. Let H be the complete bipartite graph $K_{6,6}$. Take G to be the complete graph K_{3}. Note that $\left|E\left(K_{6,6}\right)\right|=36$ and $\left|E\left(K_{3}\right)\right|=3$. So it does not violate Theorem ??. Further, K_{3} is regular of degree 2 and $K_{6,6}$ is regular of degree 6 . Hence, Theorem 2.2 is not violated either. However, a graph is bipartite if and only if it does not contain any odd cycles. In particular, $K_{6,6}$ contains no K_{3} subgraph.

3 Sufficiency

In the previous section, we discussed a couple of "easy" ways to show that decomposition fails to exist. In this section, we show that in some cases, it is "easy" to show that a decomposition exists. We will restrict our attention to the the case where our host graph H is the complete graph on v vertices, K_{v}. To facilitate our discussion, we will assume that the vertices of K_{v} are labeled with the integers modulo v, i.e., $\{0,1, \ldots, v-1\}$. It is also useful to introduce a modular absolute value on the integers modulo v as follows:

$$
|x|_{v}= \begin{cases}x & \text { if } 0 \leq x \leq v / 2 \\ v-x & \text { if } v / 2<x<n\end{cases}
$$

Figure 2: The graph $G,[a, b, c ; d]$

We define the length of the edge between vertices i and j as $|i-j|_{v}$. Notice that if v is odd (say $v=2 t+1$), then for all $k \in\{1, \ldots, t\}$, vertex $i \in K_{v}$ has exactly two edges of length k, namely $i+k(\bmod v)$ and $i-k(\bmod v)$. If v is even, then each i has an additional edge of length $i+\frac{v}{2}$. This extra edge can cause problems. We will see how to deal with this problem later.

Our goal will be to assign labels from $\mathbb{Z}_{2 t+1}$ to the vertices of G such that each of the differences $\{1, \ldots, t\}$ appears exactly once on the edges of G. As an example of the methods of this section, we will assume that $H=K_{v}$ and that G is the graph obtained from K_{3} by adding a pendant edge (see Figure 2).Note that Theorem ?? implies that a necessary condition for the existence of a G-decomposition of K_{v} is that $v \equiv 0(\bmod 8)$ or that $v \equiv 1(\bmod 8)$. We will denote the labels of a G-block by $[a, b, c ; d]$ where a, b, and c are the labels on the vertices of the K_{3} and d is the label of the pendant vertex adjacent to a.

For our example, consider the specific example where $v=9$. Our set of differences is $\{1,2,3,4\}$. Consider the labeling $[0,1,3 ; 4]$ on the vertices of G (this is sometimes called our base block). The edge 01 has length 1 , the edge 13 has length 2, the edge 03 has length 3, and the edge 04 has length 4. To obtain our second block in the decomposition, we add 1 to each of the label of our base block to give us the block $[1,2,4 ; 5]$. Continue adding 1 to each of our labels, reducing modulo 9 when necessary (such a decomposition is often called cyclic because of this reduction). This gives us the required decomposition $[0,1,3 ; 4],[1,2,4 ; 5],[2,3,5 ; 6],[3,4,6 ; 7],[4,5,7 ; 8],[5,6,8 ; 0]$, $[6,7,0 ; 1],[7,8,1 ; 2]$, and $[8,0,2 ; 3]$. This set of blocks can be more compactly represented as $[i, i+1, i+3 ; i+4]$ for $i=0,1, \ldots, 8$. In this case, it is understood that our computations on the vertices are done modulo 9 . Note that if $i=0$, we get our original base block $[0,1,3 ; 4]$. For this reason, we often just list the base blocks for our decomposition.

As a second example, consider the case where $v=17$. Our set of dif-
ferences is $\{1, \ldots, 8\}$. We now need two base blocks to account for the four differences. Two such blocks are $[0,1,7 ; 4]$ and $[0,2,5 ; 8]$.

As mentioned earlier, the case where v is even (say $v=2 t$) often requires a slightly different strategy. In this case, we will label the vertices of K_{v} with the elements of $\mathbb{Z}_{2 t-1} \cup\{\infty\}$ (the use of a point at infinity is borrowed from projective geometry). Thus, each of the vertices $0,1, \ldots, 2 t-2$ have two edges of length k for $k=1, \ldots, t-1$ and one edge of length ∞. Thus, we want our base blocks to have each of these differences exactly once.

So if $v=8$, then we can accomplish the required decomposition with the base block $[0,1,3 ; \infty]$. Likewise, we can accomplish the case where $v=$ 16 with the base blocks $[0,1,7 ; \infty]$ and $[0,2,5 ; 4]$. We generalize the above observations in the following theorem.

Theorem 3.1 Let G be the graph obtained from K_{3} by appending a pendant edge to one of the vertices. There exist a G-decomposition of K_{v} if and only if $v \equiv 0,1(\bmod 8)$.

One of the most famous graph decomposition problems is a K_{3}-decomposition of a K_{v}. This problem was solved independently by Kirkman [15] and Steiner [21]. Such a decomposition is often called a Steiner triple system in honor of Steiner. For more information on Steiner triple systems, see [4]. Our treatment of this subject will follow [13].

Theorem 3.2 For $v \geq 3$ and $v \equiv 1,3(\bmod 6)$, there exists a K_{3}-decomposition of K_{v}.

Proof. Note that the case where $v \equiv 1(\bmod 6)$, can further be divided into the subcases $v \equiv 1(\bmod 24), v \equiv 7 \bmod 24, v \equiv 13(\bmod 24)$, and $v \equiv 19$ $(\bmod 24)$. Similarly, the case where $v \equiv 3(\bmod 6)$ can be further divided into the subcases $v \equiv 3(\bmod 24), v \equiv 9(\bmod 24), v \equiv 15(\bmod 24)$, and $v \equiv 21(\bmod 24)$. We will consider each of these case in turn. In all cases, computations on the components are assumed to be done modulo v.

Suppose that $v \equiv 1(\bmod 24)$. Thus, there exists $k \in \mathbb{N}$ such that $v=$ $24 k+1$. Since $v=1$ is not possible, we can assume that $k \geq 1$. For $j=$ $0,1, \ldots, k-1$ and $i=0,1, \ldots, 24 k$ we use the blocks $[i, i+2 j+1, i+j+11 k+1]$, $[i, i+2 j+3 k+1, i+j+9 k+1],[i, i+2 j+3 k+2, i+j+6 k+2]$, and $[i, i+2 k, i+8 k+1]$. If $k \geq 2$, then we also use the blocks $[i, i+2 \ell+2, i+$ $8 k+\ell+2]$ for $\ell=0,1, \ldots, k-2$ and $i=0,1, \ldots, 24 k$.

Suppose that $v \equiv 3(\bmod 24)$. Thus, there exists $k \in \mathbb{N}$ such that $v=$ $24 k+3$. Since the case where $v=3$ is trivial, we can assume that $k \geq 1$. For $\ell=0,1, \ldots, 8 k$, we use the blocks $[\ell, \ell+8 k+1, \ell+16 k+2]$. In addition, we use the blocks $[i, i+2 j+1, i+j+11 k+2],[i, i+2 j+2, i+j+8 k+2]$, $[i, i+2 j+3 k+2, i+j+9 k+2]$, and $[i, i+2 j+3 k+1, i+j+6 k+1]$ for $j=0,1, \ldots, k-1$ and $i=0,1, \ldots, 24 k+2$.

Suppose that $v \equiv 7(\bmod 24)$. Thus, there exists $k \in \mathbb{N}$ such that $v=$ $24 k+7$. We use the blocks $[i, i+2 k+1, i+8 k+3]$ for $i=0,1, \ldots, 24 k+6$. If $k \geq 1$, then we use the additional blocks $[i, i+2 j+1, i+j+11 k+4]$, $[i, i+2 j+2, i+j+8 k+4],[i, i+2 j+3 k+3, i+j+9 k+4]$, and $[i, i+2 j+$ $3 k+2, i+j+6 k+3]$ for $j=0,1, \ldots, k-1$ and $i=0,1, \ldots, 24+6$.

For $v=9$, we suppose that the vertex set of K_{9} is $\{0,1,2,3,4,5,6,7, \infty\}$. Thus, the set of differences is $\{1,2,3,4, \infty\}$. It is important to note that with the difference 4 , we can only rotate the corresponding block half way through the treatments. The reason for this is that the difference 4 is its own additive inverse modulo 8 . Thus, if we do a complete rotation of a block, say $[0,1,4]$, then this would result in the block $[4,5,0]$. Hence, the pair of treatments 0 and 4 would be repeated. Thus, we partition our differences into the sets $\{1,2,3\}$ (similar to the previous examples) and $\{4, \infty\}$. The first partition generates the blocks $[i, i+1, i+3]$ for $i=0,1, \ldots, 7$. The second partition generates the blocks $[j, j+4, \infty]$ for $j=0,1,2,3$. Direct inspection confirms that these blocks give the required decomposition.

Suppose that $v \equiv 9(\bmod 24)$. Thus, there exists $k \in \mathbb{N}$ such that $v=$ $24 k+9$. The case where $v=9$ is done above. Hence, we can assume that $k \geq 1$. For $\ell=0,1, \ldots, 8 k+2$, use the blocks $[\ell, \ell+8 k+3, \ell+16 k+6]$. For $k \geq 1$, we use the additional blocks $[i, i+2 k-1, i+5 k+2],[i, i+3 k, i+$ $12 k+3],[i, i+3 k+1, i+12 k+5],[i, i+2 j+3 k+2, i+j+9 k+5]$, and $[i, i+2 j+3 k+5, i+j+6 k+4]$ for $j=0,1, \ldots, k-1$ and $i=0,1, \ldots, 24 k+8$. If $k \geq 2$, then we additionally use the blocks $[i, i+2 j+1, i+j+11 k+4]$ and $[i, i+2 j+2, i+j+8 k+4]$ for $j=0,1, \ldots, k-2$ and $i=0,1, \ldots, 24 k+8$.

Suppose that $v \equiv 13(\bmod 24)$. Thus, there exists $k \in \mathbb{N}$ such that $v=24 k+13$. If $k \geq 0$, then we use the blocks $[i, i+2 k+1, i+8 k+4]$ and $[i, i+3 k+2, i+12 k+7]$ for $i=0,1, \ldots, 24 k+12$. If $k \geq 1$, then we use the additional blocks $[i, i+2 j+1, i+j+11 k+6],[i, i+2 j+2, i+j+8 k+5]$, $[i, i+2 j+3 k+4, i+j+9 k+6]$, and $[i, i+2 j+3 k+3, i+j+6 k+4]$ for $j=0,1, \ldots, k-1$ and $i=0,1, \ldots, 24 k+12$.

Suppose that $v \equiv 15(\bmod 24)$. Thus, there exists $k \in \mathbb{N}$ such that $v=24 k+15$. For $\ell=0,1, \ldots, 8 k+4$, use the blocks $[\ell, \ell+8 k+5, \ell+$
$16 k+10]$. Additionally, we use the blocks $[i, i+3 k+2, i+12 k+8]$ and $[i, i+2 j+3 k+3, i+j+6 k+4]$ for $j=0,1, \ldots, k$ and $i=0,1, \ldots, 24 k+14$. If $k \geq 1$, then we use the additional blocks $[i, i+2 j+1, i+j+11 k+7]$, $[i, i+2 j+2, i+j+8 k+6]$, and $[i, i+2 j+3 k+4, i+j+9 k+7]$ for $j=0,1, \ldots, k-1$ and $i=0,1, \ldots, 24 k+14$.

Suppose that $v \equiv 19(\bmod 24)$. Thus, there exists $k \in \mathbb{N}$ such that $v=24 k+19$. If $k \geq 0$, then we use the blocks $[i, i+2 k+1, i+8 k+5]$, $[i, i+3 k+2, i+12 k+8]$, and $[i, i+3 k+3, i+12 k+10]$ for $i=0,1, \ldots, 24 k+18$. If $k \geq 1$, then we use the additional blocks $[i, i+2 j+1, i+j+11 k+8]$, $[i, i+2 j+2, i+j+8 k+6],[i, i+2 j+3 k+5, i+j+9 k+8]$, and $[i, i+2 j+$ $3 k+4, i+j+6 k+5]$ for $j=0,1, \ldots, k-1$ and $i=0,1, \ldots, 24 k+18$.

Suppose that $v \equiv 21(\bmod 24)$. Thus, there exists $k \in \mathbb{N}$ such that $v=24 k+21$. For $\ell=0,1, \ldots, 8 k+6$, use the blocks $[\ell, \ell+8 k+7, \ell+$ $16 k+14]$. Additionally, use the blocks $[i, i+2 j+1, i+j+11 k+10]$, $[i, i+2 j+3 k+3, i+j+9 k+8]$, and $[i, i+2 j+3 k+4, i+j+6 k+6]$ for $j=0,1, \ldots, k$ and $i=0,1, \ldots, 24 k+20$. If $k \geq 1$, then use the additional blocks $[i, i+2 j+2, i+j+8 k+8]$ for $j=0,1, \ldots, k-1$ and $i=0,1, \ldots, 24 k+20$.

One of the most famous open problems in graph decompositions is that of Ringel's Conjecture [19].

Conjecture 3.3 (Ringel's Conjecture [19]) If T is a tree with q edges, there exists a T-decomposition of $K_{2 q+1}$.

4 Graceful Labelings

In an effort to solve Ringel's Conjecture, Rosa introduced several methods of labeling the vertices of graphs in order to achieve a base block as described above [20]. The most important of these labelings was popularized by Golomb [9] under the name of graceful labelings. The dynamic survey by Gallian [8] and its over 2100 references is a testament to the amount of research done on graceful and related labelings.

Definition 4.1 Let G be a graph with q edges. A graceful labeling on G is an injective function $f: V(G) \rightarrow\{0,1, \ldots, q\}$ such that $\{|f(x)-f(y)|: x y \in$ $E(G)\}=\{1, \ldots, q\}$. A graph is graceful if it has a graceful labeling.

Figure 3: A gracefully labeled caterpillar - $P_{3}(6,1,4)$

In our next result, we show that it a graph G on q edges has a graceful labeling, then there exists a G decomposition of $K_{2 q+1}$.

Theorem 4.2 Let G be a graph with q edges. If G is graceful, then there exists a G-decomposition of $K_{2 q+1}$.

Proof. From a graceful labeling of G, we define copies of G in $K_{2 q+1}$. These copies are $G_{0}, G_{1}, \ldots, G_{2 q}$. The vertices of G_{k} are $k, k+1, \ldots, k+q$ $(\bmod 2 q+1)$, where $k+i$ is adjacent to $k+j$ in G_{k} if and only if i is adjacent to j in our gracefully labeled base block. Thus each of the G_{k} has exactly one of the differences $1, \ldots, q$. Further the edge between $k+i$ and $k+j$ in $K_{2 q+1}$ is covered by the corresponding edge in G_{k}. Hence, the graceful labeling induces a decomposition of $K_{2 q+1}$.

We now give some examples of graceful labelings on graphs. Recall that a caterpillar can be obtained from the path on the vertices x_{1}, \ldots, x_{n} by appending a_{i} pendants $x_{i, 1}, \ldots, x_{i, a_{i}}$ to x_{i}. Such a caterpillar is denoted $P_{n}\left(a_{1}, \ldots, a_{n}\right)$ (see Figure 3). Note that the set of caterpillars include all stars, double stars, and paths.

Theorem 4.3 All caterpillars are graceful.
Proof. Note that the caterpillar $P_{n}\left(a_{1}, \ldots, a_{n}\right)$ has $a_{1}+\cdots+a_{n}+n$ vertices and $q=a_{1}+\cdots+a_{n}+n-1$ edges. It suffices to give the required labeling.

Label $f\left(x_{1}\right)=0, f\left(x_{1, i}\right)=q-i+1$ for $i=1, \ldots, a_{1}$, and $f\left(x_{2}\right)=q-a_{1}$. This gives us edge labels $q-a_{1}, q-a_{1}+1, \ldots, q$. Now, label the pendants of x_{2} with $f\left(x_{2, i}\right)=i$ for $i=1, \ldots, a_{2}$. We also label $f\left(x_{3}\right)=a_{2}+1$. This gives us the edge labels $q-a_{1}-a_{2}-1, q-a_{1}-a_{2}, \ldots, q-a_{1}-1$. We continue this
process alternating high and low labels on the vertices to give the required labeling.

Of course, not all trees are caterpillars. In Figure 4, we give all a graceful labeling on all non-caterpillar trees with nine vertices or less.

The above information leads credence to the following conjecture.
Conjecture 4.4 (Graceful Tree Conjecture [20]) All trees are graceful.
If the Graceful Tree Conjecture were true, then Theorem 4.2 would imply Ringel's Conjecture. There has been a great deal of work finding graceful labelings on graphs and making partial progress on the Graceful Tree Conjecture. A short collection of these results are given below.

Proposition 4.5 The following graphs are known to have a graceful labelling:
(i) Caterpillars [20].
(ii) Trees with at most four endpoints [12, 14, 20, 24].
(iii) Trees of diameter at most five [11].
(iv) Trees with at most 35 vertices [6].
(v) Complete bipartite graphs [9, 20].
(vi) Cycles of length n where $n \equiv 0(\bmod 4)$ or $n \equiv 3(\bmod 4)[16]$.
(vii) Gear graphs, the Petersen graph, and polyhedral graphs [23].
(viii) $C_{n} \vee K_{1}$ (i.e., Wheel Graphs) [7].
(ix) The n-dimensional hypercube, $Q_{n}[17,18]$.
(x) The graph obtained by subdividing each edge of a graceful tree [2].

One of the advantages to graceful labelings (as opposed to the more general labelings described in Rosa) is that it is possible to show that certain graphs do not have a graceful labeling. One such result is given below.

Theorem 4.6 Suppose that G is an eulerian graph with q edges. If G is graceful, then $q \equiv 0,3(\bmod 4)$.

Figure 4: Graceful labelings for non-caterpillar trees with $n(G) \leq 9$

Proof. Recall that a (connected) graph is eulerian if and only if every vertex is of even degree.

Suppose that f is a graceful labeling on G. Suppose that $E(G)=$ $\left\{z_{1}, \ldots, z_{q}\right\}$ and the endpoints of z_{i} are the vertices x_{i} and y_{i}. Without loss of generality, we assume that $f\left(x_{i}\right)>f\left(y_{1}\right)$ for all $i=1, \ldots, q$. Thus the edge label of z_{i} is $f^{\prime}\left(z_{i}\right)=f\left(x_{i}\right)-f\left(y_{i}\right)$. Thus,

$$
\begin{aligned}
& \sum_{i=1}^{q} f^{\prime}\left(z_{i}\right)=\sum_{i=1}^{q} f\left(x_{i}\right)-\sum_{i=1}^{q} f\left(y_{i}\right) \\
= & \sum_{i=1}^{q} f\left(x_{i}\right)+\sum_{i=1}^{q} f\left(y_{i}\right)-2 \sum_{i=1}^{q} f\left(y_{i}\right) .
\end{aligned}
$$

Consider the list $x_{1}, \ldots, x_{q}, y_{1}, \ldots, y_{q}$. The number of times each vertex appears is equal to its degree. Since G is eulerian, each vertex is of ven degree. This implies that

$$
\sum_{i=1}^{q} f\left(x_{i}\right)+\sum_{i=1}^{q} f\left(y_{i}\right) \quad \text { is even. }
$$

Therefore,

$$
\sum_{i=1}^{q} f^{\prime}\left(z_{i}\right) \quad \text { is even. }
$$

Say

$$
\sum_{i=1}^{q} f^{\prime}\left(z_{i}\right)=2 k, k \in \mathbb{Z}
$$

Since f is graceful, the edge labels are distinct elements of the set $\{1, \ldots, q\}$. Hence,

$$
\begin{aligned}
\sum_{i=1}^{q} f^{\prime}\left(z_{i}\right) & =1+\cdots+q=\frac{q(q+1)}{2} \\
\Rightarrow & 2 k=\frac{q(q+1)}{2} \\
\Rightarrow & k=\frac{q(q+1)}{2} \in \mathbb{Z}
\end{aligned}
$$

Thus, $4 \mid q$ or $4 \mid q+1$. Equivalently, $q \equiv 0,3(\bmod 4)$.

References

[1] Juraj Bosák. Decompositions of graphs, volume 47 of Mathematics and its Applications (East European Series). Kluwer Academic Publishers Group, Dordrecht, 1990. Translated from the Slovak with a preface by Štefan Znám.
[2] M. Burzio and G. Ferrarese. The subdivision graph of a graceful tree is a graceful tree. Discrete Math., 181(1-3):275-281, 1998.
[3] Yeow Meng Chee. Graphical designs. In Charles J. Colbourn and Jeffrey H. Dinitz, editors, The CRC Handbook of Combinatorial Designs, pages 366-369. CRC Press, Inc., Boca Raton, 1996.
[4] Charles J. Colbourn and Rudolf Mathon. Steiner systems. In Charles J. Colbourn and Jeffrey H. Dinitz, editors, The CRC Handbook of Combinatorial Designs, pages 66-75. CRC Press, Inc., Boca Raton, 1996.
[5] Reinhard Diestel. Graph decompositions. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1990. A study in infinite graph theory.
[6] W. Fang. A computational approach to the graceful tree conjecture. Pre-print.
[7] Roberto W. Frucht and Joseph A. Gallian. Labeling prisms. Ars Combin., 26:69-82, 1988.
[8] Joseph A. Gallian. A dynamic survey of graph labeling. Electron. J. Combin., 5:Dynamic Survey 6, 2015.
[9] Solomon W. Golomb. How to number a graph. In Graph theory and computing, pages 23-37. Academic Press, New York, 1972.
[10] Katherine Heinrich. Graph decompositions and designs. In Charles J. Colbourn and Jeffrey H. Dinitz, editors, The CRC Handbook of Combinatorial Designs, pages 361-366. CRC Press, Inc., Boca Raton, 1996.
[11] Pavel Hrnčiar and Alfonz Haviar. All trees of diameter five are graceful. Discrete Math., 233(1-3):133-150, 2001.
[12] C. Huang, A. Kotzig, and A. Rosa. Further results on tree labellings. Utilitas Math., 21:31-48, 1982.
[13] F. K. Hwang and S. Lin. A direct method to construct triple systems. J. Combinatorial Theory Ser. A, 17:84-94, 1974.
[14] De Jun Jin, Fan Hong Meng, and Jin Gong Wang. The gracefulness of trees with diameter 4. Acta Sci. Natur. Univ. Jilin., (1):17-22, 1993.
[15] T.P. Kirkman. On a problem in combinatorics. Cambridge and Dublin Mathematics, 2:191-204, 1847.
[16] K. M. Koh and N. Punnim. On graceful graphs: cycles with 3consecutive chords. Bull. Malaysian Math. Soc. (2), 5(1):49-64, 1982.
[17] Anton Kotzig. Decompositions of complete graphs into isomorphic cubes. J. Combin. Theory Ser. B, 31(3):292-296, 1981.
[18] Maryvonne Maheo. Strongly graceful graphs. Discrete Math., 29(1):3946, 1980.
[19] G. Ringel. Extremal problems in the theory of graphs. In Theory of Graphs and its Applications, pages 85-90. Publ. House Czechoslovak Acad. Sci., Prague, 1964.
[20] A. Rosa. On certain valuations of the vertices of a graph. In Theory of Graphs (Internat. Sympos., Rome, 1966), pages 349-355. Gordon and Breach, New York, 1967.
[21] J. Steiner. Kombinatorische aufgabe. J. Reine Angew. Math., 45:181182, 1853.
[22] W. D. Wallis. Combinatorial designs, volume 118 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1988.
[23] Eric W. Weisstein. Graceful graph. Mathworld - A Wolfram Web Resource http://mathworld.wolfram.com/GracefulGraph.html.
[24] Shi Lin Zhao. All trees of diameter four are graceful. In Graph theory and its applications: East and West (Jinan, 1986), volume 576 of Ann. New York Acad. Sci., pages 700-706. New York Acad. Sci., New York, 1989.

[^0]: *Department of Mathematics and Statistics, East Tennessee State University, Johnson City, TN 37614-1700 USA email: beelerr@etsu.edu

