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1 Introduction

A graph decomposition is a particular problem in the field of combinatorial
designs (see Wallis [22] for more information on design theory). A graph
decomposition of a graph H is a partition of the edge set of H . In this
case, the graph H is called the host for the decomposition. Most graph
decomposition problems are concerned with the case where every part of the
partition is isomorphic to a single graph G. In this case, we refer to the graph
G as the prototype for the decomposition. Further, we refer to the parts of
the partition as blocks.

As an example, consider the host graph Q3 as shown in Figure 1. In this
case, we want to find a decomposition of Q3 into isomorphic copies of the
path on three vertices, P3. We label the vertices of P3 as an ordered triple
(a, b, c). where ab and bc are the edges of P3. The required blocks in the
decompositions are (0, 2, 4), (1, 0, 6), (1, 3, 2), (1, 7, 5), (3, 5, 4), and (4, 6, 7).

Usually, the goal of a combinatorial design is to determine whether the
particular design is possible. The same is true for graph decompositions.
Namely, given a host graph H and a prototype G, determine whether there
exist a decomposition of H into isomorphic copies of G. Often, this is a
difficult problem. In fact, there are entire books written on the subject (for
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Figure 1: A P3-decomposition of a Q3

example, see Bosák [1] and Diestel [5]). Because of the difficulty of the prob-
lem, most researchers are only concerned with case where H is the complete
graph on v vertices. This special case is often referred to as a graphical de-
sign. Note that we are using he variable v here because v is traditionally used
to denote the number of treatments or varieties in a combinatorial design.

Even when we restrict our attention to the complete graph Kv (or more
generally, λKv where each edge of the complete graph has been replaced by
an edge of multiplicity λ), progress in this area has often been slow. Results
often proceed at a rate of one graph family at a time (sometimes only a single
graph at a time). The survey articles written by Chee [3] and Heinrich [10]
are a testament to the number of individual researchers who have contributed
to this area of mathematics.

Because of the difficulty of the problem, we will be concerned with only
a few elementary results.

2 Necessary conditions

As mentioned above, it is often difficult to determine whether aG-decomposition
of H exists. However, there are a few elementary theorems that provide nec-
essary conditions for the existence of a G-decomposition ofH . Such theorems
are important because if the graphs G and H violate these results, then we
know immediately that there is no G-decomposition of H .

Theorem 2.1 A necessary condition for the existence of a G-decomposition
of H is that |E(G)| divides |E(H)|.

Proof. Suppose that such a decomposition exists. Then the edge set ofH can
be partitioned into b blocks of cardinality |E(G)|. Thus, b|E(G)| = |E(H)|.
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Hence, |E(G)| divides |E(H)|.

A natural question with any necessary condition is whether it is also
sufficient. In other words, if |E(G)| divides |E(H)|, then are we guaranteed
the existence of a G-decomposition of H? As an example, consider H = K6

and G = K3. Note that |E(K6)| = 15 and |E(K3)| = 3. However, K6 is
a regular graph of degree 5. Whereas K3 is regular of degree 2. So there
is a problem when K3-blocks meet at a single vertex of K6. This idea is
generalized in the following theorem.

Theorem 2.2 Suppose that G is regular graph of degree r. A necessary
condition for the existence of a G-decomposition of a graph H is that r divides
deg(v) for all v ∈ V (H).

Proof. Suppose that such a decomposition exists. In this decomposition,
suppose that bi G-blocks meet at vi ∈ V (H). Each of these blocks contain
r of the edges incident with vi. Thus, deg(vi) = rbi. Ergo, r must divide
deg(v) for all v ∈ V (H).

In general, this is still not sufficient. Let H be the complete bipartite
graph K6,6. Take G to be the complete graph K3. Note that |E(K6,6)| = 36
and |E(K3)| = 3. So it does not violate Theorem ??. Further, K3 is regular
of degree 2 andK6,6 is regular of degree 6. Hence, Theorem 2.2 is not violated
either. However, a graph is bipartite if and only if it does not contain any
odd cycles. In particular, K6,6 contains no K3 subgraph.

3 Sufficiency

In the previous section, we discussed a couple of “easy” ways to show that
decomposition fails to exist. In this section, we show that in some cases, it
is “easy” to show that a decomposition exists. We will restrict our attention
to the the case where our host graph H is the complete graph on v vertices,
Kv. To facilitate our discussion, we will assume that the vertices of Kv are
labeled with the integers modulo v, i.e., {0, 1, ..., v − 1}. It is also useful to
introduce a modular absolute value on the integers modulo v as follows:

|x|v =

{

x if 0 ≤ x ≤ v/2
v − x if v/2 < x < n.
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Figure 2: The graph G, [a, b, c; d]

We define the length of the edge between vertices i and j as |i− j|v. Notice
that if v is odd (say v = 2t+ 1), then for all k ∈ {1, ..., t}, vertex i ∈ Kv has
exactly two edges of length k, namely i+ k (mod v) and i− k (mod v). If v
is even, then each i has an additional edge of length i + v

2
. This extra edge

can cause problems. We will see how to deal with this problem later.
Our goal will be to assign labels from Z2t+1 to the vertices of G such that

each of the differences {1, ..., t} appears exactly once on the edges of G. As
an example of the methods of this section, we will assume that H = Kv and
that G is the graph obtained from K3 by adding a pendant edge (see Figure
2).Note that Theorem ?? implies that a necessary condition for the existence
of a G-decomposition of Kv is that v ≡ 0 (mod 8) or that v ≡ 1 (mod 8).
We will denote the labels of a G-block by [a, b, c; d] where a, b, and c are
the labels on the vertices of the K3 and d is the label of the pendant vertex
adjacent to a.

For our example, consider the specific example where v = 9. Our set of
differences is {1, 2, 3, 4}. Consider the labeling [0, 1, 3; 4] on the vertices of
G (this is sometimes called our base block). The edge 01 has length 1, the
edge 13 has length 2, the edge 03 has length 3, and the edge 04 has length
4. To obtain our second block in the decomposition, we add 1 to each of the
label of our base block to give us the block [1, 2, 4; 5]. Continue adding 1 to
each of our labels, reducing modulo 9 when necessary (such a decomposition
is often called cyclic because of this reduction). This gives us the required
decomposition [0, 1, 3; 4], [1, 2, 4; 5], [2, 3, 5; 6], [3, 4, 6; 7], [4, 5, 7; 8], [5, 6, 8; 0],
[6, 7, 0; 1], [7, 8, 1; 2], and [8, 0, 2; 3]. This set of blocks can be more compactly
represented as [i, i+1, i+3; i+4] for i = 0, 1, ..., 8. In this case, it is understood
that our computations on the vertices are done modulo 9. Note that if i = 0,
we get our original base block [0, 1, 3; 4]. For this reason, we often just list
the base blocks for our decomposition.

As a second example, consider the case where v = 17. Our set of dif-
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ferences is {1, ..., 8}. We now need two base blocks to account for the four
differences. Two such blocks are [0, 1, 7; 4] and [0, 2, 5; 8].

As mentioned earlier, the case where v is even (say v = 2t) often requires
a slightly different strategy. In this case, we will label the vertices of Kv with
the elements of Z2t−1 ∪ {∞} (the use of a point at infinity is borrowed from
projective geometry). Thus, each of the vertices 0, 1, ..., 2t−2 have two edges
of length k for k = 1, ..., t− 1 and one edge of length ∞. Thus, we want our
base blocks to have each of these differences exactly once.

So if v = 8, then we can accomplish the required decomposition with
the base block [0, 1, 3;∞]. Likewise, we can accomplish the case where v =
16 with the base blocks [0, 1, 7;∞] and [0, 2, 5; 4]. We generalize the above
observations in the following theorem.

Theorem 3.1 Let G be the graph obtained from K3 by appending a pendant
edge to one of the vertices. There exist a G-decomposition of Kv if and only
if v ≡ 0, 1 (mod 8).

One of the most famous graph decomposition problems is aK3-decomposition
of a Kv. This problem was solved independently by Kirkman [15] and Steiner
[21]. Such a decomposition is often called a Steiner triple system in honor
of Steiner. For more information on Steiner triple systems, see [4]. Our
treatment of this subject will follow [13].

Theorem 3.2 For v ≥ 3 and v ≡ 1, 3 (mod 6), there exists aK3-decomposition
of Kv..

Proof. Note that the case where v ≡ 1 (mod 6), can further be divided into
the subcases v ≡ 1 (mod 24), v ≡ 7 mod 24, v ≡ 13 (mod 24), and v ≡ 19
(mod 24). Similarly, the case where v ≡ 3 (mod 6) can be further divided
into the subcases v ≡ 3 (mod 24), v ≡ 9 (mod 24), v ≡ 15 (mod 24), and
v ≡ 21 (mod 24). We will consider each of these case in turn. In all cases,
computations on the components are assumed to be done modulo v.

Suppose that v ≡ 1 (mod 24). Thus, there exists k ∈ N such that v =
24k + 1. Since v = 1 is not possible, we can assume that k ≥ 1. For j =
0, 1, ..., k−1 and i = 0, 1, ..., 24k we use the blocks [i, i+2j+1, i+j+11k+1],
[i, i + 2j + 3k + 1, i + j + 9k + 1], [i, i + 2j + 3k + 2, i + j + 6k + 2], and
[i, i+ 2k, i+ 8k + 1]. If k ≥ 2, then we also use the blocks [i, i + 2ℓ + 2, i+
8k + ℓ+ 2] for ℓ = 0, 1, ..., k − 2 and i = 0, 1, ..., 24k.
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Suppose that v ≡ 3 (mod 24). Thus, there exists k ∈ N such that v =
24k + 3. Since the case where v = 3 is trivial, we can assume that k ≥ 1.
For ℓ = 0, 1, ..., 8k, we use the blocks [ℓ, ℓ+ 8k + 1, ℓ+ 16k + 2]. In addition,
we use the blocks [i, i+ 2j + 1, i+ j + 11k + 2], [i, i+ 2j + 2, i+ j + 8k + 2],
[i, i+ 2j + 3k + 2, i+ j + 9k + 2], and [i, i+ 2j + 3k + 1, i+ j + 6k + 1] for
j = 0, 1, ..., k − 1 and i = 0, 1, ..., 24k + 2.

Suppose that v ≡ 7 (mod 24). Thus, there exists k ∈ N such that v =
24k + 7. We use the blocks [i, i+ 2k + 1, i+ 8k + 3] for i = 0, 1, ..., 24k + 6.
If k ≥ 1, then we use the additional blocks [i, i + 2j + 1, i + j + 11k + 4],
[i, i+2j +2, i+ j +8k+4], [i, i+2j +3k+3, i+ j +9k+4], and [i, i+2j +
3k + 2, i+ j + 6k + 3] for j = 0, 1, ..., k − 1 and i = 0, 1, ..., 24 + 6.

For v = 9, we suppose that the vertex set of K9 is {0, 1, 2, 3, 4, 5, 6, 7,∞}.
Thus, the set of differences is {1, 2, 3, 4,∞}. It is important to note that with
the difference 4, we can only rotate the corresponding block half way through
the treatments. The reason for this is that the difference 4 is its own additive
inverse modulo 8. Thus, if we do a complete rotation of a block, say [0, 1, 4],
then this would result in the block [4, 5, 0]. Hence, the pair of treatments
0 and 4 would be repeated. Thus, we partition our differences into the sets
{1, 2, 3} (similar to the previous examples) and {4,∞}. The first partition
generates the blocks [i, i + 1, i + 3] for i = 0, 1, ..., 7. The second partition
generates the blocks [j, j +4,∞] for j = 0, 1, 2, 3. Direct inspection confirms
that these blocks give the required decomposition.

Suppose that v ≡ 9 (mod 24). Thus, there exists k ∈ N such that v =
24k + 9. The case where v = 9 is done above. Hence, we can assume that
k ≥ 1. For ℓ = 0, 1, ..., 8k + 2, use the blocks [ℓ, ℓ+ 8k + 3, ℓ+ 16k + 6]. For
k ≥ 1, we use the additional blocks [i, i + 2k − 1, i + 5k + 2], [i, i + 3k, i +
12k + 3], [i, i + 3k + 1, i + 12k + 5], [i, i + 2j + 3k + 2, i + j + 9k + 5], and
[i, i+2j+3k+5, i+ j+6k+4] for j = 0, 1, ..., k− 1 and i = 0, 1, ..., 24k+8.
If k ≥ 2, then we additionally use the blocks [i, i + 2j + 1, i + j + 11k + 4]
and [i, i+2j+2, i+ j +8k+4] for j = 0, 1, ..., k− 2 and i = 0, 1, ..., 24k+8.

Suppose that v ≡ 13 (mod 24). Thus, there exists k ∈ N such that
v = 24k + 13. If k ≥ 0, then we use the blocks [i, i+ 2k + 1, i+ 8k + 4] and
[i, i+ 3k + 2, i+ 12k + 7] for i = 0, 1, ..., 24k + 12. If k ≥ 1, then we use the
additional blocks [i, i+ 2j + 1, i+ j + 11k + 6], [i, i+ 2j + 2, i+ j + 8k + 5],
[i, i+ 2j + 3k + 4, i+ j + 9k + 6], and [i, i+ 2j + 3k + 3, i+ j + 6k + 4] for
j = 0, 1, ..., k − 1 and i = 0, 1, ..., 24k + 12.

Suppose that v ≡ 15 (mod 24). Thus, there exists k ∈ N such that
v = 24k + 15. For ℓ = 0, 1, ..., 8k + 4, use the blocks [ℓ, ℓ + 8k + 5, ℓ +
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16k + 10]. Additionally, we use the blocks [i, i + 3k + 2, i + 12k + 8] and
[i, i+ 2j + 3k + 3, i+ j + 6k + 4] for j = 0, 1, ..., k and i = 0, 1, ..., 24k + 14.
If k ≥ 1, then we use the additional blocks [i, i + 2j + 1, i + j + 11k + 7],
[i, i + 2j + 2, i + j + 8k + 6], and [i, i + 2j + 3k + 4, i + j + 9k + 7] for
j = 0, 1, ..., k − 1 and i = 0, 1, ..., 24k + 14.

Suppose that v ≡ 19 (mod 24). Thus, there exists k ∈ N such that
v = 24k + 19. If k ≥ 0, then we use the blocks [i, i + 2k + 1, i + 8k + 5],
[i, i+3k+2, i+12k+8], and [i, i+3k+3, i+12k+10] for i = 0, 1, ..., 24k+18.
If k ≥ 1, then we use the additional blocks [i, i + 2j + 1, i + j + 11k + 8],
[i, i+2j +2, i+ j +8k+6], [i, i+2j +3k+5, i+ j +9k+8], and [i, i+2j +
3k + 4, i+ j + 6k + 5] for j = 0, 1, ..., k − 1 and i = 0, 1, ..., 24k + 18.

Suppose that v ≡ 21 (mod 24). Thus, there exists k ∈ N such that
v = 24k + 21. For ℓ = 0, 1, ..., 8k + 6, use the blocks [ℓ, ℓ + 8k + 7, ℓ +
16k + 14]. Additionally, use the blocks [i, i + 2j + 1, i + j + 11k + 10],
[i, i + 2j + 3k + 3, i + j + 9k + 8], and [i, i + 2j + 3k + 4, i + j + 6k + 6]
for j = 0, 1, ..., k and i = 0, 1, ..., 24k + 20. If k ≥ 1, then use the additional
blocks [i, i+2j+2, i+j+8k+8] for j = 0, 1, ..., k−1 and i = 0, 1, ..., 24k+20.

One of the most famous open problems in graph decompositions is that
of Ringel’s Conjecture [19].

Conjecture 3.3 (Ringel’s Conjecture [19]) If T is a tree with q edges, there
exists a T -decomposition of K2q+1.

4 Graceful Labelings

In an effort to solve Ringel’s Conjecture, Rosa introduced several methods of
labeling the vertices of graphs in order to achieve a base block as described
above [20]. The most important of these labelings was popularized by Golomb
[9] under the name of graceful labelings. The dynamic survey by Gallian [8]
and its over 2100 references is a testament to the amount of research done
on graceful and related labelings.

Definition 4.1 Let G be a graph with q edges. A graceful labeling on G is
an injective function f : V (G) → {0, 1, ..., q} such that {|f(x)− f(y)| : xy ∈
E(G)} = {1, ..., q}. A graph is graceful if it has a graceful labeling.
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Figure 3: A gracefully labeled caterpillar - P3(6, 1, 4)

In our next result, we show that it a graph G on q edges has a graceful
labeling, then there exists a G decomposition of K2q+1.

Theorem 4.2 Let G be a graph with q edges. If G is graceful, then there
exists a G-decomposition of K2q+1.

Proof. From a graceful labeling of G, we define copies of G in K2q+1.
These copies are G0, G1,..., G2q. The vertices of Gk are k, k + 1,...,k + q
(mod 2q+1), where k+ i is adjacent to k+ j in Gk if and only if i is adjacent
to j in our gracefully labeled base block. Thus each of the Gk has exactly one
of the differences 1,...,q. Further the edge between k + i and k + j in K2q+1

is covered by the corresponding edge in Gk. Hence, the graceful labeling
induces a decomposition of K2q+1.

We now give some examples of graceful labelings on graphs. Recall that a
caterpillar can be obtained from the path on the vertices x1,...,xn by append-
ing ai pendants xi,1,...,xi,ai to xi. Such a caterpillar is denoted Pn(a1, ..., an)
(see Figure 3). Note that the set of caterpillars include all stars, double stars,
and paths.

Theorem 4.3 All caterpillars are graceful.

Proof. Note that the caterpillar Pn(a1, ..., an) has a1 + · · ·+ an + n vertices
and q = a1 + · · ·+ an + n− 1 edges. It suffices to give the required labeling.

Label f(x1) = 0, f(x1,i) = q − i + 1 for i = 1, ..., a1, and f(x2) = q − a1.
This gives us edge labels q − a1, q − a1 + 1,...,q. Now, label the pendants of
x2 with f(x2,i) = i for i = 1, ..., a2. We also label f(x3) = a2 + 1. This gives
us the edge labels q− a1 − a2 − 1, q− a1 − a2,...,q− a1 − 1. We continue this
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process alternating high and low labels on the vertices to give the required
labeling.

Of course, not all trees are caterpillars. In Figure 4, we give all a graceful
labeling on all non-caterpillar trees with nine vertices or less.

The above information leads credence to the following conjecture.

Conjecture 4.4 (Graceful Tree Conjecture [20]) All trees are graceful.

If the Graceful Tree Conjecture were true, then Theorem 4.2 would imply
Ringel’s Conjecture. There has been a great deal of work finding graceful
labelings on graphs and making partial progress on the Graceful Tree Con-
jecture. A short collection of these results are given below.

Proposition 4.5 The following graphs are known to have a graceful la-
belling:

(i) Caterpillars [20].

(ii) Trees with at most four endpoints [12, 14, 20, 24].

(iii) Trees of diameter at most five [11].

(iv) Trees with at most 35 vertices [6].

(v) Complete bipartite graphs [9, 20].

(vi) Cycles of length n where n ≡ 0 (mod 4) or n ≡ 3 (mod 4) [16].

(vii) Gear graphs, the Petersen graph, and polyhedral graphs [23].

(viii) Cn ∨K1 (i.e., Wheel Graphs) [7].

(ix) The n-dimensional hypercube, Qn [17, 18].

(x) The graph obtained by subdividing each edge of a graceful tree [2].

One of the advantages to graceful labelings (as opposed to the more gen-
eral labelings described in Rosa) is that it is possible to show that certain
graphs do not have a graceful labeling. One such result is given below.

Theorem 4.6 Suppose that G is an eulerian graph with q edges. If G is
graceful, then q ≡ 0, 3 (mod 4).
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Figure 4: Graceful labelings for non-caterpillar trees with n(G) ≤ 9
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Proof. Recall that a (connected) graph is eulerian if and only if every vertex
is of even degree.

Suppose that f is a graceful labeling on G. Suppose that E(G) =
{z1, ..., zq} and the endpoints of zi are the vertices xi and yi. Without loss
of generality, we assume that f(xi) > f(y1) for all i = 1, ..., q. Thus the edge
label of zi is f

′(zi) = f(xi)− f(yi). Thus,

q
∑

i=1

f ′(zi) =

q
∑

i=1

f(xi)−

q
∑

i=1

f(yi)

=

q
∑

i=1

f(xi) +

q
∑

i=1

f(yi)− 2

q
∑

i=1

f(yi).

Consider the list x1,...,xq, y1,...,yq. The number of times each vertex
appears is equal to its degree. Since G is eulerian, each vertex is of ven
degree. This implies that

q
∑

i=1

f(xi) +

q
∑

i=1

f(yi) is even.

Therefore,
q

∑

i=1

f ′(zi) is even.

Say
q

∑

i=1

f ′(zi) = 2k, k ∈ Z.

Since f is graceful, the edge labels are distinct elements of the set {1, ..., q}.
Hence,

q
∑

i=1

f ′(zi) = 1 + · · ·+ q =
q(q + 1)

2

⇒ 2k =
q(q + 1)

2

⇒ k =
q(q + 1)

2
∈ Z.

Thus, 4|q or 4|q + 1. Equivalently, q ≡ 0, 3 (mod 4).
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