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1 Introduction

In the infamous “Fifteen Puzzle,” numbered tiles are slid either horizontally
or vertically into an empty slot. Folklore tells us that in 1886, puzzle master
Sam Loyd offered a one-thousand dollar prize if anyone could swap tiles 14
and 15 and return the other tiles to their original slots. However, Slocum’s
book [7] argues that the puzzle is much older. Regardless of the origins of the
puzzle, we wish to know if this is possible. Fortunately, the tools of modern
algebra will help us to unravel this puzzle. Our treatment of the puzzle will
follow many of the articles written on this puzzle such as [1, 4, 5, 8].
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2 Results about Permutations from Modern

Algebra

Recall that a permutation on a (finite) set S is a bijection that maps S to
itself. Typically, we think of a permutation as a function that rearranges or
shuffles the elements of S. Thus, any possible (or impossible) state of the
Fifteen Puzzle is simply a permutation of the tiles. Without loss of generality,
we can assume that any permutation on the tiles returns the “blank” tile to
the lower right corner. As usual, we can represent any state of the Fifteen
Puzzle using our “two-line notation” for permutations. In this case, we can
use the top line or the array to represent the “slot” and the second line of
the array to represent the tile currently occupying the slot. For example,

11 14 10 6
9 4 12 5
15 8 3 13
2 1 7

can be represented as

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
11 14 10 6 9 4 12 5 15 8 3 13 2 1 7

)

.

Remark 2.1 There are two main conventions form multiplying permutation.
Some authors such as Herstein [3] multiply permutations from left to right.
Others such as Fraleigh [2] multiply permutations from right to left. For
consistency, we will adopt the convention used in Fraleigh.

Recall that every permutation can represented as a product of disjoint
cycles. Note that these disjoint cycles can be written in any order as disjoint
cycles commute. So the above permutation can represented more compactly
using the orbits (or cycles) of the elements. By convention, algebraists typ-
ically omit any point that is mapped to itself (i.e., we omit the fixed points
of the permutation). In our example, slot 1 now has tile 11. Slot 11 now has
tile 3. Likewise, slot 3 now has tile 10, and so on. This gives us the cycle
notation for the above permutation:

(1, 11, 3, 10, 8, 5, 9, 15, 7, 12, 13, 2, 14)(4, 6).
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Recall that a transposition is a 2-cycle. Further, we can write any cycle as
product of transpositions. For example,

(1, 2, 3, 4, 5) = (1, 5)(1, 4)(1, 3)(1, 2).

In particular, the permutation in our example can be written as

(1, 11, 3, 10, 8, 5, 9, 15, 7, 12, 13, 2, 14)(4, 6) =

(1, 14)(1, 2)(1, 13)(1, 12)(1, 7)(1, 15)(1, 9)(1, 5)(1, 8)(1, 10)(1, 3)(1, 11)(4, 6).

In this case, our permutation has been written as a product of thirteen trans-
positions. Likewise, the permutation that flips tiles 14 and 15 while returning
all other tiles to their original positions can be written as (14, 15), which is
a single transposition.

Any permutation can be written as either

(i) A product of an even number of transpositions or

(ii) A product of an odd number of transpositions.

Note that no permutation can be written as both a product of an even number
of transpositions and a product of an odd number of transpositions.

Recall that the set of all permutations on n symbols is the nth Symmetric
group, denoted Sn. Clearly, the set of permutations on the tiles of the Fifteen
Puzzle is a subgroup of S15. Whereas the subgroup of Sn consisting of only
the even permutations is known as the Alternating group on n symbols. The
nth Alternating group is denoted An.

Note that the permutation (14, 15) is an odd permutation. Hence, if we
can show that the group of permutations on the tiles of the Fifteen Puzzle
is a subgroup of the Alternating group, then swapping those tiles as Loyd
described is impossible.

Consider the set of permutations in which the blank tile is returned to
its original position. In particular, look at paths that start and end with the
blank tile in the bottom right corner. One such circuitous path is as follows:



4

Observe that in this circuit:

(i) For every up, there is a down.

(ii) For every left, there is a right.

Thus, we must have an even number of transpositions. Thus the next
proposition follows immediately.

Proposition 2.2 The set of permutations on the tiles of the Fifteen Puzzle
that return the blank tile to the bottom right corner is a subgroup of the
Alternating group, A15.

Hence, swapping tiles 14 and 15 while returning all other tiles to their
original position is impossible!

A natural question is whether every even permutation is obtainable as
a permutation of the tiles of the Fifteen Puzzle. In other words, is the set
of permutations on the tiles of the Fifteen Puzzle in which the blank tile is
returned to the bottom right corner isomorphic to A15? In order to answer
this question, we will need a few facts about the Alternating group.

3 True facts about the Alternating group

Recall that if S is a generating set of a group G, then every element of G
can be written as a product of the elements of S. Typically, we think of the
elements of S as an “alphabet.” If S is a generating set, then every element
in G can be written as a “word,” where the letters of the word come from
our alphabet. So, how do we generate the Alternating group?

Proposition 3.1 The Alternating group An, n ≥ 3, is generated by the set
of 3-cycles. In other words,

An = 〈(a, b, c) : a, b, c ∈ [n], a 6= b, a 6= c, b 6= c〉.

Proof. Note that A3
∼= Z3, so the claim clearly holds. We may then assume

that n ≥ 4.
Take a, b, c, d to be distinct elements of [n]. Note that a pair of transpo-

sitions will share at most two of these elements. We need only show how to
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represent every possible pair of transpositions (up to relabeling the letters)
can be represented as a product of 3-cycles. The possibilities are:

e = (a, b)(a, b) = (a, b, c)3,

(a, c)(a, b) = (a, b, c),

(a, b)(a, c) = (a, c, b),

(a, b)(c, d) = (a, c, b)(a, c, d).

Showing that we can get every possible 3-cycle as a permutation could
be both difficult and time consuming. For this reason, our next proposition
provides a more useful way of generating the Alternating group.

Proposition 3.2 Let a and b be distinct, fixed (but arbitrary) elements of
[n], where n ≥ 3. The Alternating group An is generated by 3-cycles of the
form (a, b, k), where k ∈ [n]− {a, b}. In other words,

An = 〈(a, b, k) : k ∈ [n]− {a, b}〉.

Proof. By Proposition 3.1, An is generated by the set of all possible 3-cycles.
Thus, it is sufficient to show that we can represent any 3-cycle as a product
of 3-cycles of the form (a, b, k). Note that any 3-cycle will contain at most
two of the elements of {a, b}. For this reason, the possibilities are:

(a, k, b) = (a, b, k)−1 = (a, b, k)2,

(a, c, d) = (a, b, d)(a, b, c)2,

(b, c, d) = (a, b, d)2(a, b, c),

(c, d, e) = (a, b, c)2(a, b, e)(a, b, d)2(a, b, c)

= (a, b, c)−1
(

(a, b, e)(a, b, d)−1
)

(a, b, c).

In our next section, we will use these results to prove that set of permu-
tations on the tiles of the Fifteen Puzzle is isomorphic to the Alternating
group A15.
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4 The Puzzle Group for the Fifteen Puzzle

In order to show our main result, we only need to show that we can get
the 3-cycles described in Proposition 3.2 as a permutation of the tiles of the
Fifteen Puzzle. First we examine a permutation of the tiles in the bottom
right corner.

Lemma 4.1 The set of permutations of the Fifteen Puzzle contains the 3-
cycle τ = (11, 12, 15).

Proof. In its natural state, tiles in the bottom right corner are:

11 12
15

Shift tile 15 to the right. This gives the following configuration:

11 12
15

Shift tile 11 down. This gives the following configuration:

12
11 15

Shift tile 12 left. This gives the following configuration:

12
11 15

Shift tile 15 up. This gives the following configuration:

12 15
11

Hence, we have obtained the permutation (11, 12, 15).

For the remaining 3-cycles, we will construct a “long cycle” that leaves
two elements (say 11 and 12) and passes through the remaining elements.
Such a cycle would look like:
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Our next lemma explicitly describes how to achieve this “long cycle.”

Lemma 4.2 The cycle ρ = (1, 2, 6, 7, 3, 4, 8, 15, 10, 14, 13, 9, 5) is a permuta-
tion of the tiles of the Fifteen Puzzle.

Proof. Begin by moving 12 down, 11 right, 15 up, 12 left, and 11 down.
The bottom right corner now has the following configuration:

15
12 11

Note that at this point, all other tiles are still in their original positions.
We now perform the “long cycle” described above as follows: move 15 right,
10 right, 14 up, 13 right, 9 down, 5 down, 1 down, 2 left, 6 up, 7 left, 3 down,
4 left, 8 up, and 15 up. Currently, the tiles are in the following configuration:

2 6 4 8
1 7 3 15
5 14 10
9 13 12 11

Finally, we move 11 up, 12 right, 10 down, 11 left, and 12 up. This results
in the following configuration:

2 6 4 8
1 7 3 15
5 14 11 12
9 13 10

This is the permutation (1, 2, 6, 7, 3, 4, 8, 15, 10, 14, 13, 9, 5).

Notice that if we apply ρ once, then tile 10 is in slot 15. If we apply ρ
enough times, we can move any of the tiles in the set [15]−{11, 12} into the
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slot 15. For instance, if we wished to have tile 3 in slot 15, then we would
apply ρ ten times. This action is typically represented by ρ10.

Our goal is to show that every permutation in A15 is a permutation on
the tiles of the Fifteen Puzzle. To do this, we let 11 and 12 fulfill the roles
of a and b, respectively, in Proposition 3.2. Thus, for k ∈ [15]− {11, 12}, we
need only show that the permutation (11, 12, k) is a permutation of the tiles
of the Fifteen Puzzle.

To do this, we take advantage of the concept of conjugacy. Recall that
elements a and b are conjugate elements in the group G if there is an element
g ∈ G such that g−1ag = b. Our strategy will be to show that any 3-cycle
of the form (11, 12, k) is conjugate with the 3-cycle (11, 12, 15) (recall that
we showed (11, 12, 15) is possible in Lemma 4.1). To do this, we will use ρm

(where ρ is defined in Lemma 4.2) to position our target tile k in slot 15. We
then apply the permutation (11, 12, 15) to rotate tiles 11, 12, and the target.
Finally, we apply the permutation ρ−m to return all tiles except 11, 12, and
k to their original positions.

For example, to obtain the permutation (11, 12, 8) = (8, 11, 12), we will
apply ρ, then τ , and finally ρ−1. This can be represented symbolically as

ρ−1τρ =

(1, 2, 6, 7, 3, 4, 8, 15, 10, 14, 13, 9, 5)−1(11, 12, 15)(1, 2, 6, 7, 3, 4, 8, 15, 10, 14, 13, 9, 5)

= (1, 5, 9, 13, 14, 10, 15, 8, 4, 3, 7, 6, 2)(11, 12, 15)(1, 2, 6, 7, 3, 4, 8, 15, 10, 14, 13, 9, 5)

= (8, 11, 12).

Theorem 4.3 The set of permutations on the tiles of the Fifteen Puzzle is
isomorphic to A15, the Alternating group on 15 symbols.

Proof. By Lemma 4.1 and Lemma 4.2, the permutations τ = (11, 12, 15)
and ρ = (1, 2, 6, 7, 3, 4, 8, 15, 10, 14, 13, 9, 5) are permutations of the tiles of
the Fifteen Puzzle. Suppose that m is the smallest positive integer such that
ρm maps tile k to slot 15. We first apply ρm in order to position tile k in slot
15. We then apply τ to rotate tiles 11, 12, and 15. We then apply ρ−m to
return all tiles (except 11, 12, and k to their original positions). This results
in the permutation (11, 12, k). Since k is arbitrary, we can generate A15 by
Proposition 3.2.

In our next section, we consider a generalization of the Fifteen Puzzle in
which there are n rows and m columns.
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5 Generalizations of the Fifteen Puzzle

Suppose that we have a sliding tile puzzle in a n bym rectangular grid. Again,
there is one empty slot and the tiles can move horizontally or vertically. Let
Pn,m denote the group of permutations on the tiles of this puzzle. Using the
same argument as in Proposition 2.2, the following proposition is immediate.

Proposition 5.1 The group Pn,m is a subgroup of the Alternating group
Anm−1.

Note that in its original configuration, the tile in the ith row and jth
column is (i − 1)n + j. Note that we can get a specific 3-cycle (nm −m −
1, nm−m,nm− 1) using the same argument as in Lemma 4.1.

Lemma 5.2 The group P (n,m) contains the 3-cycle (nm − m − 1, nm −
m,nm− 1).

Proof. Move nm− 1 right, nm−m− 1 down, nm−m left, and nm− 1 up.

Lemma 5.3 Ifm is even, then Pn,m contains the cycle σ = (nm−1, a1, ..., anm−4),
where {a1, ..., anm−4} = [nm− 1]− {nm−m− 1, nm−m,nm− 1}.

Proof.
Note that we can rotate the elements nm − m − 1, nm − m,nm − 1 so

that nm − 1 is in slot nm −m − 1 and the blank tile is in slot nm −m as
in Lemma 4.2. It suffices to give a “long cycle” that passes through each tile
(other than nm−m−1 and nm−m) exactly once. Once such cycle is given
below:
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We then rotate the three tiles in the bottom right corner so that tiles
nm − m − 1 and nm − m have been returned to their original position.

Lemma 5.4 If m is even, then Pn,m contains the 3-cycle (nm−m−1, nm−
m, ak), where ak ∈ [nm− 1]− {nm−m− 1, nm−m}.

Proof. By Lemma 5.2 and Lemma 5.3 the permutations (nm−m−1, nm−
m,nm − 1) and σ = (nm − 1, a1, ..., anm−4), where {a1, ..., anm−4} = [nm −
1]−{nm−m−1, nm−m,nm−1}. Note that σk maps tile ak to slot nm−1.
Thus,

(nm−m− 1, nm−m, ak) = σ−k(nm−m− 1, nm−m,nm− 1)σk.

Lemma 5.4 in fact proves that when m is even, Pn,m
∼= Anm−1. To prove

the case when n and m are both odd, we would hope to find a “long cycle”
such as in Lemma 5.3. Unfortunately, such a “long cycle”is impossible when
n and m are both odd, as will be discussed in the next section. However, we
can again use the idea of conjugacy to get the remaining cases.

Theorem 5.5 The puzzle group Pn,m is isomorphic to the isomorphic to the
Alternating group, Anm−1.

Proof. If n or m is even, then the result follows from Proposition 3.2 and
Lemma 5.4. Thus, we may assume that n and m are both odd.

Consider the tiles in columns 2,...,m. Since the number of columns in
this subgrid is even, every permutation of the form (nm−m−1, nm−m, k),
where k 6= 1 (mod m) is possible. In particular, the permutation (nm−m−
1, nm−m, 2) is possible.

Slide the tiles nm−1, nm−2,...,nm−m+2 to the right. Notice that the
blank tile is now in slot nm−m+2. Moreover, the first two columns now form
a Pn,2. Thus, we can get every 3-cycle on these tiles by the above arguments.
In particular, we can get every permutation of the form (2, 2 +m, 1 + km),
where 0 ≤ k ≤ n− 1. Now,

(nm−m− 1, nm−m, 1 + km) =
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Figure 1: The Coiled Fifteen Puzzle

(2, 2 +m, 1 + km)−1(nm−m− 1, nm−m, 2)(2, 2 +m, 1 + km)

= (2, 1 + km, 2 +m)(nm−m− 1, nm−m, 2)(2, 2 +m, 1 + km).

Again, this allows us to generate the Alternating group Anm−1 by Propo-
sition 3.2.

6 Adding an Extra Move

Utilizing 3D printing, Henry Segerman [6] has designed several puzzles that
can be described as generalizations of the Fifteen Puzzle. One that is par-
ticularly relevant to our discussion is the “Coiled 15 Puzzle” (see Figure )
shown at:

https://www.youtube.com/watch?v=rfAEgxNEOrQ

This puzzle allows for additional move, namely taking the tile in the ‘1’
slot into the missing tile in the ‘16’ slot. A natural problem is to determine
P, the group of permutations that are possible on the Coiled Fifteen Puzzle.
Since every permutation that is possible on the original Fifteen Puzzle is
also possible on the Coiled puzzle, we have A15 is a subgroup of P. Also, P
is a subgroup of S15. To aid discussion, it is useful to recall the following
theorem:

Theorem 6.1 Lagrange’s Theorem [2]- If G is a subgroup of a finite group
H, then |G| divides |H|.

Note that |A15| = 15!/2 and |S15| = 15!. By Lagrange’s Theorem, |P|
divides 15! and

15!

2
≤ |A15| ≤ |P| ≤ |S15|.

https://www.youtube.com/watch?v=rfAEgxNEOrQ
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2 3 4 8
9 5 6 7
10 11 12 1
13 14 15

Figure 2: A new cycle in the Coiled Fifteen Puzzle

Note that for any integer x, there are no integers y such that x/2 < y < x
that divide x. Thus if we can any permutation that is an element of P that
is not an element of A15, then P ∼= S15. Necessarily, this must be an odd
permutation.

One such permutation is given in Figure 2.
The cycle shown in Figure 2 can be represented as

(1, 2, 3, 4, 8, 7, 6, 5, 9, 10, 11, 12) =

(1, 12)(1, 11)(1, 10)(1, 9)(1, 5)(1, 6)(1, 7)(1, 8)(1, 4)(1, 3)(1, 2).

Since this cycle is the product of eleven transpositions, it is an odd permu-
tation. Hence P ∼= S15 by the above discussion.

Several of Segerman’s other puzzles draw inspirations from the Fifteen
Puzzle. The Hyperbolic 12-puzzle and the Hyperbolic 29-puzzle variations
of the Fifteen Puzzle if it were played on the hyperbolic plane. These are
illustrated on the top row of Figure 3. For more information on these hyper-
bolic puzzles, see

https://www.youtube.com/watch?v=EitWHthBY30

Segerman’s “15+4 Puzzle” maybe considered as a first step towards a
hyperbolic version of the Fifteen Puzzle. This is illustrated on the bottom
left of Figure 3. For more information on the 15+4 puzzle, see

https://www.youtube.com/watch?v=Hc3yfuXiWe0

Finally, his “Continental Drift Puzzle” is a variation of the Fifteen Puzzle
if it were played on a sphere. A “flat” version of this puzzle is illustrated on

https://www.youtube.com/watch?v=EitWHthBY30
https://www.youtube.com/watch?v=Hc3yfuXiWe0
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Figure 3: The Hyperbolic 12-puzzle, The Hyperbolic 29-puzzle, The 15+4
Puzzle, and the Continental Drift Puzzle
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Figure 4: The Rainbow Ball Puzzle

the bottom right of Figure 3. For more information on the Continental Drift
Puzzle, see

https://www.youtube.com/watch?v=0uQx33KFMO0

7 Rainbow Ball Puzzle

The Rainbow ball (see Figure 4 is a spherical puzzle with eleven colored balls
and one empty slot. The correct position for each ball is denoted by ring
around their respective hole. For example, the green ball’s correct position
is the slot circled by a green ring. When playing with the puzzle, one of the
five colored balls surrounding the hole are pushed into the puzzle. The player
continues to do this until they believe that the puzzle has been sufficiently
scrambled. The goal is to then unscramble the puzzle. However, our goal is
(as usual) to determine the group of permutations on the colored balls of the
puzzle.

To examine the group, it is useful to represent each colored ball as a
number 1,...,11. Examining the puzzle reveals that each of slot in the puzzle
is adjacent to five others. In other words, if any slot is empty, then there is
always five balls that can be pushed into the empty slot. It is easy to see that
these slots and their adjacencies form an icosahedron. A flat representation
of the Rainbow Ball as an icosahedron is given in Figure 5.

Our procedure for determining the puzzle group of the Rainbow Ball is
much the same as the procedure used in Section 4. We know that the puzzle
group of the Rainbow Ball is a subgroup of S11, the symmetric group on
eleven symbols. We want to show that the puzzle group is isomorphic to

https://www.youtube.com/watch?v=0uQx33KFMO0
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9 6

8

10 7
1

2
11 3

4

5

Figure 5: The Rainbow Ball represented as an icosahedron

S11. To show that every permutation of the colored balls is possible on the
Rainbow Ball would be both tedious and difficult. Instead, we will use known
properties of the symmetric group to simplify this process.

Recall that every finite permutation can be written as a product of trans-
positions. From this, the next proposition follows immediately.

Proposition 7.1 For n ≥ 2, the symmetric group on n symbols, Sn is gen-
erated by 2-cycles. In other words,

Sn =< (a, b) : a, b ∈ [n], a 6= b > .

Again, we do not want to find every 2-cycle. Instead, we find a specific
subset that will generate the remaining 2-cycles.

Proposition 7.2 For n ≥ 2, the symmetric group on n symbols is generated
by 2-cycles of the form (1, k), where k ∈ [n]− {1}. In other words,

Sn =< (1, k) : k ∈ [n]− {1} > .

Proof. By Proposition 7.1, Sn is generated by the set of 2-cycles. For
this reason, it is sufficient to show that ever 2-cycle can be written as a



16

1

2

→ 2

1

Figure 6: The permutation (1,2) on the Rainbow Ball

product of the form (1, k), where k ∈ [n] − {1}. Since e = (1, 2)2 and
(a, b) = (1, a)(1, b)(1, a), where a, b ∈ [n] − {1} this completes the proof.

As before, we will first show a particular transposition is in the puzzle
group. Then we will show that a particular “long cycle” is in the puzzle
group.

Lemma 7.3 The permutation (1, 2) is in the puzzle group of the Rainbow
Ball.

Proof. This is accomplished by moving 2 left into the empty slot, 1 up and
to the right to 2’s former slot, and finally 2 down and to the right into 1’s
former slot. See Figure 6.

To show that all permutations of the form (1, k), where k ∈ [11]−{1}, are
in the puzzle group of the Rainbow Ball, we find a “long cycle” that passes
through each of the numbers except 1.

Lemma 7.4 The permutation (2, 3, 4, 5, 6, 7, 8, 9, 10, 11) is in the puzzle group
of the Rainbow Ball.

Proof. The relevant “long cycle” is illustrated in Figure 7. Specifically:

1. 11 is moved right and down into the empty slot,

2. 10 is moved up to the 11 slot,

3. 9 is moved up and right into the 10 slot,

4. 8 is moved down and left into the 9 slot,

5. 7 is moved down and left into the 8 slot,

6. 6 is moved up and left into the 7 slot,
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Figure 7: A “long cycle” on the Rainbow Ball

7. 5 is moved down and to the right into the 6 slot,

8. 4 is moved up into the 5 slot,

9. 3 is moved up and to the left into the 4 slot,

10. 2 is moved up and to the right into the 3 slot,

11. Finally, 11 is moved right into the 2 slot.

The resulting configuration is shown in Figure 8. In cycle notation, this is
represented as

(2, 3, 4, 5, 6, 7, 8, 9, 10, 11).

With these two lemmas in mind, we now present our main result for this
section.

Theorem 7.5 The puzzle group of the Rainbow Ball is isomorphic to S11,
the symmetric group on eleven symbols.



18

8 5

7

9 6
1

11
10 2

3

4

Figure 8: The Rainbow Ball after the “long cycle” has been applied

Proof. By Proposition 7.2, it suffices to show that every permutation of the
form (1, k) is in the puzzle group, where k ∈ [11] − {1}. Per Lemma 7.3,
we know (1, 2) is in the puzzle group. Likewise, Lemma 7.4 showed that the
puzzle group contains

ρ = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11).

Finally, for k = 2, ..., 11,

(1, k) = ρ−(k−2)(1, 2)ρk−2.

Since the puzzle group of the Rainbow Puzzle contains all permutations of
the form (1, k) for k = 2, ..., 11, it is isomorphic to S11.

8 Hamilton Cycles and Bipartite Graphs

In the Section 5, we made note of the fact that it was impossible to create
a “long cycle” on the n by m grid, when n and m are both odd. In this
section, we prove this. To do this, we will need a few elementary concepts
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from graph theory. For a more comprehensive introduction to graph theory,
refer to West [9].

If you have taken graph theory course, then you know that a graph is a
collection of vertices (usually, these are visually represented as points in the
plane) and edges between pairs of distinct vertices. If G is a graph, then
the vertex set of G is denoted V (G). Likewise, the edge set of G is denoted
E(G). If an edge uv is between two vertices u and v, then we say that u and
v are adjacent.

We now describe the rectangular play field of the Fifteen Puzzle in terms
of graphs. Begin by assigning a vertex for each slot in the Fifteen Puzzle.
The slot in the ith row and jth column will be associated with vertex (i, j).
So,

V (G) = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Two vertices (i, j), (r, s) ∈ V (G) are adjacent if and only if either

(i) i− r = ±1 and j = s or

(ii) i = r and j − s = ±1.

In graph theory, such a graph on n rows and m columns is called a mesh and
is denoted Mn,m.

We say that G is a bipartite graph if V (G) = X ∪Y such that X ∩Y = ∅
and if xy ∈ E(G), then x ∈ X and y ∈ Y . In our next result, we show that
all meshes are bipartite graphs. To do this, we basically place the slots in a
“checker board” pattern.

Proposition 8.1 The mesh Mn,m is a bipartite graph.

Proof. We need only assign vertices to the sets X and Y . We assign vertex
(i, j) to set X if i+ j is even. Likewise, if i+ j is odd, we assign (i, j) to set
Y . Suppose that (i, j), (r, s) ∈ X . Since i + j and r + s are both even then
either |i − r| ≥ 2 or |j − s| ≥ 2. In either case, the two vertices cannot be
adjacent. A similar argument holds if both vertices are in Y .

In graph theory, these “long cycles” are often described in terms of hamil-
ton cycles. A hamilton cycle on a graph is a cycle that passes through every
vertex once and exactly once and returns to the original vertex. As usual,
the edges of the hamilton cycle must be edges in the original graph. These
cycles are named in honor of William Rowan Hamilton who developed the
icosian game. An example of a hamilton cycle is given on the icosian game
below.
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In the Section 5, we gave a partial result on the existence of a hamilton
cycle on the mesh Mn,m, where at least one of n or m is even.

Proposition 8.2 Suppose m is even. The mesh Mn,m has a hamilton cycle.

Proof. Since m is even, we write it as m = 2t. We use a “saw tooth” pattern
as in the previous section. The explicit pattern is to start at (2, 1):

(i) For i = 1, ..., t, traverse (j, 2i − 1), where j = 2, ..., n, then traverse
(n− p+ 2, 2i), where p = 2, ..., n.

(ii) Next, traverse (1, 2t− q + 1), where q = 1, ..., 2t.

(iii) Finally, return to (2, 1).

We finally, show our main result for this section. Namely, we show that if
n and m are both odd, then Mn,m has no hamilton cycle. Actually, we show
a more general result regarding bipartite graphs.

Proposition 8.3 Let G be a bipartite graph with V (G) = X ∪ Y . If |X| 6=
|Y |, then G has no hamilton cycle.

Proof. Any hamilton cycle on a bipartite graph must alternate between
vertices in X and vertices in Y . Since |X| 6= |Y |, this is impossible.

In particular, using the “checker board” pattern described in Proposition
8.1 on M2n+1,2m+1 results in |X| = 2nm+n+m+1 and |Y | = 2nm+n+m.
Hence, there is no hamilton cycle on M2n+1,2m+1.
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