
Peg Solitaire on Graphs:

Results, Variations, and Open Problems

Robert A. Beeler, Ph.D.

East Tennessee State University

April 20, 2017

Robert A. Beeler, Ph.D. (East Tennessee State University )Peg Solitaire on Graphs:Results, Variations, and Open ProblemsApril 20, 2017 1 / 109



Acknowledgements

I like to acknowledge my peg solitaire co-authors:
Aaron Gray, Hannah Green, Russell Harper, Paul Hoilman,
Tony Rodriguez, and Clayton Walvoort.

Robert A. Beeler, Ph.D. (East Tennessee State University )Peg Solitaire on Graphs:Results, Variations, and Open ProblemsApril 20, 2017 2 / 109



Description of the game

Peg solitaire is a table game which traditionally begins with “pegs” in
every space except for one which is left empty (in other words, a
“hole”). If in some row or column two adjacent pegs are next to a
hole (as in Figure 1), then the peg in x can jump over the peg in y
into the hole in z . The peg in y is then removed. The goal is to
remove every peg but one. If this is achieved, then the board is
considered solved. For more information on traditional peg solitaire,
refer to Beasley [1] or Berlekamp et al. [10]
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Figure: A Typical Jump in Peg Solitaire
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A Brief History (part 1)

Figure: Madame la Princesse de Soubise joüant au jeu de Solitaire by
Claude-Auguste Berey, 1697.
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A Brief History (part 2)

Not so very long ago there became widespread an excellent kind of
game, called Solitaire, where I play on my own, but as with a friend
as witness and referee to see that I play correctly. A board is filled
with stones set in holes, which are removed in turn, but none (except
the first, which may be chosen for removal at will) can be removed
unless you are able to jump another stone across it into an adjacent
empty place, when it is captured as in Draughts. He who removes all
the stones right to the end according to this rule, wins; but he who is
compelled to leave more than one stone still on the board, yields the
palm.

Gottfried Wilhelm Leibniz,
Miscellanea Berolinensia 1 (1710) 24.
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The version you are most likely familiar with...
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The generalization to graphs

In a 2011 paper (B-Hoilman [6]), the game is generalized to graphs
in the combinatorial sense. So, if there are pegs in vertices x and y
and a hole in z , then we allow x to jump over y into z provided that
xy ∈ E and yz ∈ E . The peg in y is then removed.

In particular, we allow ‘L’-shaped jumps, which are not allowed in the
traditional game.

Robert A. Beeler, Ph.D. (East Tennessee State University )Peg Solitaire on Graphs:Results, Variations, and Open ProblemsApril 20, 2017 7 / 109



Definitions from [6]

A graph G is solvable if there exists some vertex s so that,
starting with S = {s}, there exists an associated terminal state
consisting of a single peg.

A graph G is freely solvable if for all vertices s so that, starting
with S = {s}, there exists an associated terminal state
consisting of a single peg.

A graph G is k-solvable if there exists some vertex s so that,
starting with S = {s}, there exists an associated minimal
terminal state consisting of k nonadjacent pegs.

In particular, a graph is distance 2-solvable if there exists some
vertex s so that, starting with S = {s}, there exists an
associated terminal state consisting of two pegs that are
distance 2 apart.
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Examples

If n is even, then the path Pn is solvable, but not freely solvable.
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Examples (Part 2)

The “house” graph is freely solvable.
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Examples (Part 2)

The “house” graph is freely solvable.

It may seem like I cheated, but I didn’t!
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Examples (Part 3)

For k ≥ 2, the star, K1,k+1 is k-solvable.
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Examples (Part 3)

For k ≥ 3, the star, K1,k+1 is k-solvable.
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Examples (Part 4)

If n is odd and n ≥ 5, then the cycle Cn is distance 2-solvable.
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Tricks of the Trade

The Inheritance Principle -

If G is a k-solvable spanning subgraph of H, then H is (at worst)
k-solvable.
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Tricks of the Trade (Part 2)

The Duality Principle -

Let T be a terminal configuration of pegs associated with starting
configuration S . If S ′ and T ′ are obtained from S and T ,
respectively, by reversing the roles of pegs and holes, then S ′ is a
terminal state associated with starting state T ′.
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Common Graphs [6]

The usual goal is to determine the necessary and sufficient conditions
for the solvability of a family of graphs. To date, the solvability of the
following graphs has been determined:

K1,n is (n − 1)-solvable; Kn,m is freely solvable for n,m ≥ 2.

Pn is freely solvable iff n = 2; Pn is solvable iff n is even or
n = 3; Pn is distance 2-solvable in all other cases.

Cn is freely solvable iff n is even or n = 3; Cn is distance
2-solvable in all other cases.

The Petersen Graph, the platonic solids, the archimedean solids,
the complete graph, and the n-dimensional hypercube are freely
solvable.
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Common Graphs (Part 2)

The double star DS(L,R) is freely solvable iff L = R and R 6= 1;
D(L,R) is solvable iff L ≤ R +1; DS(L,R) is distance 2-solvable
iff L = R + 2; DS(L,R) is (L− R)-solvable in all other cases [7].

The solvability of all graphs with seven vertices or less [3].

Figure: The Double Star - DS(4, 3)
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Cartesian Products

One of the most important results from B-Hoilman [6] was the
following:
Theorem

(i) If G and H are both solvable graphs, then the Cartesian product
G�H is solvable.

(ii) If G is solvable and H is distance 2-solvable, then G�H is
solvable.

(iii) If G and H are both distance 2-solvable, then G�H is solvable.
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Cartesian Products (Part 2)

The following observation is useful for solving Cartesian products:

Suppose that G has at least three vertices and is k-solvable
beginning with initial hole in gs . Assuming that a jump is possible,
then there is a first jump, say from g ′′

s over g ′

s into gs . It follows that
if G has holes in g ′

s and g ′′

s and pegs everywhere else, then G is
k-solvable from this state. Similarly, if G is solvable with the final
peg in gt , then there is a final jump, say from g ′′

t over g ′

t into gt .
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Cartesian Products - The Proof

Solve one copy of H.
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Cartesian Products - The Proof (Part 2)

Do some local corrections.
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Cartesian Products - The Proof (Part 3)

Notice that on each copy of G , we either have a hole in the right
place for a solution, or two holes after the first jump in a solution.
“Solve” each copy, but stop short of making the final jump.
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Cartesian Products - The Proof (Part 4)

Make some more local corrections.
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Cartesian Products - The Proof (Part 5)

Each copy of H has a hole in the in the right place for a solution, or
two holes where the first jump in a solution would be. So solve them.
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Cartesian Products - The Proof (Part 6)

One final jump to solve the graph.
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Cartesian Products - Distance 2-solvable

Notice that here we start with a hole where one of the final two pegs
would be in a distance 2-solution on G . Then do some local
corrections.
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Cartesian Products - Distance 2-solvable (Part 2)

These two copies of H have holes in the correct places (after first
jump). Distance 2-solve them independently.
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Cartesian Products - Distance 2-solvable (Part 3)

Do another round of local corrections.
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Cartesian Products - Distance 2-solvable (Part 4)

Now, each copy of G has holes in the terminal positions for a
distance 2-solution. Thus, we can use the Duality Principle to solve
each copy of G . Again, on each copy, stop short of the final jump.
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Cartesian Products - Distance 2-solvable (Part 5)

Do more local corrections.
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Cartesian Products - Distance 2-solvable (Part 6)

Each copy of H has holes in the right place. Distance 2-solve them
independently.
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Cartesian Products - Distance 2-solvable (Part 7)

Solve the graph with a final round of jumps.
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Chorded Odd Cycle

Consider the cycle on n vertices, where the vertices are labeled with
the elements of Zn in the obvious way. Recall that even cycles are
freely solvable and that odd cycles are distance 2-solvable. What if
we add an edge between vertices 0 and m? This graph is denoted
C (n,m).

Theorem [3] For all n and m ≤ n, the chorded odd cycle
C (2n + 1,m) is solvable.
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Chorded Odd Cycle - The Proof

Because the cycle has odd length, on one side of the chord we have
an even path. The final peg on an even path will be in the next to
last vertex.
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Chorded Odd Cycle - The Proof (Part 2)

Make a series of jumps on the other side of the chord.
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Chorded Odd Cycle - The Proof (Part 3)

Because we saved a couple of pegs, we can now “hopscotch” to
remove the remaining pegs.
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Other Results About Chorded Cycles

Some other results about cycles:

For all n, C (n, 2) is freely solvable [2].

If n ≤ 9 and m ≤ n, then C (2n + 1,m) is freely solvable [3].

Conjecture - All chorded odd cycles freely solvable.
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Edge Critical Graphs

Notice that the addition of any edge to the odd cycle changes its
solvability. Hence, we say that it is an edge critical graph. These
graphs were studied by B-Gray [4]. Some natural questions include:

(i) What other graphs are edge critical graphs?

(ii) How much can edge addition improve the solvability of a graph?
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Extremal results

Determining edge critical graphs is related to the extremal problem.
To motivate this, note the following:

It seems to be the case that most graphs are freely solvable. In fact,
of the 996 connected non-isomorphic graphs on seven vertices or less,
only 54 are not freely solvable [3]. It seems counterintuitive, but
perhaps the unsolvable graphs are more interesting.

Naturally, we expect that as the number of edges in a connected
graph increase, the more likely it is to be solvable or freely solvable.

Define τ(n) to be the maximum number of edges in an unsolvable
connected graph on n vertices.
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Extremal results (part 2)

It order to attack this problem, B-Gray [4] introduced the hairy
complete graph. The hairy complete graph is obtained from the
complete graph Kn by appending ai pendants to the ith vertex of the
complete graph. Without loss of generality, a1 ≥ ... ≥ an and a1 ≥ 1.
This graph is denoted Kn(a1, ..., an).

Figure: The hairy complete graph K3(5, 3, 2).
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Extremal results (part 2)

Theorem [4]

For the hairy complete graph G = Kn(a1, ..., an):

(i) The graph G is solvable iff a1 ≤
∑n

i=2 ai + n − 1;

(ii) The graph G is freely solvable iff a1 ≤
∑n

i=2 ai + n − 2 and
(n, a1, a2, a3) 6= (3, 1, 0, 0);

(iii) The graph G is distance 2-solvable iff a1 =
∑n

i=2 ai + n;

(iv) The graph G is (a1 −
∑n

i=2 ai − n + 2)-solvable if
a1 ≥

∑n
i=2 ai + n.
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Extremal results (part 3)

In particular, Kn(n, 0, ...0) and Kn(n + 1, 0, ..., 0) are not solvable.
However, the addition of any edge to either of these graphs results in
a solvable graph. Hence, they are edge critical. Note that the
number of edges in Kn(n, 0, ...0) is n(n + 1)/2. From this it follows
that if n is even, then τ(n) ≥ n(n + 2)/8.

Conjecture - If n is even, then τ(n) = n(n + 2)/8 and
Kn/2(n/2, 0, ..., 0) is the extremal graph.

Figure: K5(5, 0, 0, 0, 0)
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Classification of trees

If G is a (freely) solvable subgraph of H, then H is (freely) solvable.
Since every connected graph has a spanning subtree, the Inheritance
Principle implies that a natural (and very important) problem is to
determine which trees are solvable. All trees of diameter three or less
were classified in [6, 7]. B-Walvoort took the next natural step by
classifying the solvability of trees of diameter four [9].
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Parametrization

Diameter 4 trees will be parameterized as K1,n(c; a1, . . . , an), where n
is the number of non-central support vertices, c is the number of
pendants adjacent to x and ai is the number of pendants adjacent to
yi . Without loss of generality, we may assume that a1 ≥ ... ≥ an ≥ 1.

Also, let k = c − s + n, where s =
n

∑

i=1

ai .

Figure: The graph K1,3(4; 3, 2, 2)
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Trees of diameter 4

Theorem 1 [9]

Assume a1 ≥ 2. The conditions for solvability of such diameter four
trees are as follows:

(i) The graph K1,n(c; a1, . . . , an) is solvable iff 0 ≤ k ≤ n + 1.

(ii) The graph K1,n(c; a1, . . . , an) is freely solvable iff 1 ≤ k ≤ n.

(iii) The graph K1,n(c; a1, . . . , an) is distance 2-solvable iff
k ∈ {−1, n + 2}.

(iv) The graph K1,n(c; a1, . . . , an) is (1− k)-solvable if k ≤ −1. The
graph K1,n(c; a1, . . . , an) is (k − n)-solvable if k ≥ n + 2.
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More on trees of diameter 4

Theorem 2 [9]

The conditions for solvability of K1,n(c; 1, ..., 1) is as follows:

(i) The graph K1,2r (c; 1, . . . , 1) is solvable iff 0 ≤ c ≤ 2r and
(r , c) 6= (1, 0). The graph K1,2r+1(c; 1, . . . , 1) is solvable iff
0 ≤ c ≤ 2r + 2.

(ii) The graph K1,n(c; 1, . . . , 1) is freely solvable iff 1 ≤ c ≤ n − 1.

(iii) The graph K1,2r (c; 1, . . . , 1) is distance 2-solvable iff c = 2r + 1
or (r , c) = (1, 0). The graph K1,2r+1(c; 1, . . . , 1) is distance
2-solvable iff c = 2r + 3.

(iv) The graph K1,2r (c; 1, . . . , 1) is (c − 2r + 1)-solvable if
c ≥ 2r + 1. The graph K1,2r+1(c; 1, . . . , 1) is
(c − 2r − 1)-solvable if c ≥ 2r + 3.
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The solvability of caterpillars

The caterpillar can be obtained from the path on n vertices by
appending ai pendants to ith vertex on the path. Such a caterpillar is
denoted Pn(a1, ..., an). Note that we can assume that a1 ≥ an. If
a1 = an, then we can assume a2 ≥ an−1 and so on to ensure a unique
parameterizations under this notation.

x1,1 x1,2 x1,3 x3,1 x3,2

x1
x2 x3 x4

x1,4 x1,5 x1,6 x2,1 x3,3 x3,4 x4,2 x4,3

x4,1

Figure: The caterpillar P4(6, 1, 4, 3)
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The solvability of caterpillars (part 2)

B, Green, and Harper determined the solvability of several infinite
classes of caterpillars. For example, they determine the solvability of
caterpillars of the form P4(a1, a2, a3, a4) is as follows:

Theorem [5]

(I) The caterpillar P4(a1, a2, a3, a4) with a1 ≥ a2 + 1 is solvable if
and only if one of the following is true: (i) a1 = a2 + 1 and
either a3 − a4 ≤ 1 or a4 − a3 ≤ 3; (ii) a1 = a2 + 2 and
a4 − a3 ≤ 2; (iii) a1 = a2 + 2, a2 ≥ 1, and a3 − a4 ≥ 0;
(iv) a1 = a2 + 3 and a3 = a4 − 1.

(II) The caterpillar P4(a1, a2, a3, a4) with a2 = a1 +m, where m ≥ 0
is solvable if and only if one of the following is true:
(i) a3 = a4 + k, where k ≥ 0 and −2 ≤ m − k ≤ 2;
(ii) a4 = a3 + k, where k ≥ 1 and m + k ≤ 2.
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The number of solvable trees

An interesting question involves the percentage of trees that are
solvable. Suppose that Tn is the number of non-isomorphic trees on
n vertices and that Sn is the number of solvable non-isomorphic trees
on n vertices.
Conjecture - Sn/Tn ≥ .5 for n ≥ 9.
Stronger Conjecture - Sn/Tn is an “increasing” sequence for
“large” n.

n 6 7 8 9 10 11 12
Sn 3 6 11 24 58 122 315
Tn 6 11 23 47 106 235 531

Sn/Tn .5 .55 .48 .51 .55 .52 .59
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Variations

There are a number of natural variations for peg solitaire on graphs.
These include:

(i) Fool’s Solitaire

(ii) Peg Duotaire

(iii) Reversible Peg Solitaire

(iv) Merging Peg Solitaire

(v) Bridge Burning Solitaire
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Fool’s Solitaire

In fool’s solitaire, the player tries to leave the maximum number of
pegs possible under the caveat that the player jumps whenever
possible. This maximum number will be denoted Fs(G ).

If G is a connected graph, then a sharp upper bound for the fool’s
solitaire number is Fs(G ) ≤ α(G ), where α(G ) denotes the
independence number of G [8].
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Known Results from [8]

B-Rodriguez determined the fool’s solitaire number for several
families of graphs. In particular:

Fs(K1,n) = n.

Fs(Kn,m) = n − 1 if n ≥ m ≥ 2.

Fs(Pn) = ⌊n/2⌋.

Fs(Cn) = ⌊n−1
2
⌋.

Fs(Qn) = 2n−1 − 1.

The fool’s solitaire number for all connected graphs with six
vertices or less.
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A Natural Conjecture

In all of the above cases, Fs(G ) ≥ α(G )− 1. In fact, of the 143
non-isomorphic connected graphs with six vertices or less, 130 satisfy
Fs(G ) = α(G ). So a natural conjecture is that

α(G )− 1 ≤ Fs(G ) ≤ α(G ).

Figure: Graphs with n(G ) ≤ 6 such that Fs(G ) = α(G )− 1
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A Counterexample...

However, trees of diameter four provide an infinite class of
counterexamples to the above conjecture.

Theorem 3 [9]

Consider the diameter four tree G = K1,n(c; a1, ..., an), where ai ≥ 2
for 1 ≤ i ≤ n − ℓ, ai = 1 for n − ℓ+ 1 ≤ i ≤ n, and n ≥ 2.

(i) If c = 0 and ℓ = 0, then Fs(G ) = s + c −
⌊

n
3

⌋

.

(ii) If c ≥ 1 and ℓ = 0, then Fs(G ) = s + c −
⌊

n+1
3

⌋

.

(iii) If ℓ ≥ 1, then Fs(G ) = s + c −
⌊

n−2m+1
3

⌋

, where
m = min{ℓ,

⌊

n
2

⌋

}.

Note that the difference between α(G ) and Fs(G ) can be arbitrarily
large in trees of diameter four. However, Fs(G ) > 5α(G )/6 for all
such trees.
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A Counterexample... (Proof)

Consider the maximum independent set for a tree of diameter four.
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A Counterexample... (Proof)

To show that this is not a fool’s solitaire solution, consider the dual
configuration.
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A Counterexample... (Proof)

The dual configuration had no adjacent pegs. So it isn’t solvable. By
the Duality Principle, the maximum independent set is not achievable
as the fool’s solitaire solution.
Thus, we must add pegs to the dual. By the Duality Principle, this is
equivalent to removing pegs from the independent set.
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A Counterexample... (Proof)

Here we’ve added two pegs to the dual. These are colored red and
blue.

Robert A. Beeler, Ph.D. (East Tennessee State University )Peg Solitaire on Graphs:Results, Variations, and Open ProblemsApril 20, 2017 70 / 109



A Counterexample... (Proof)

Here we’ve added two pegs to the dual. These are colored red and
blue.
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A Counterexample... (Proof)

Here we’ve added two pegs to the dual. These are colored red and
blue.
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A Counterexample... (Proof)

Here we’ve added two pegs to the dual. These are colored red and
blue.
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A Counterexample... (Proof)

Here we’ve added two pegs to the dual. These are colored red and
blue.
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A Counterexample... (Proof)

Here we’ve added two pegs to the dual. These are colored red and
blue.
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A Counterexample... (Proof)

Here we’ve added two pegs to the dual. These are colored red and
blue.

Notice that we could remove two pegs with the first added peg and
three with the second. This is why we end up with the floor of n/3.
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More Fool’s Solitaire Results

Loeb and Wise [15] extended fool’s solitaire results to joins and
Cartesian products. In particular, they showed:

(i) Fs(G + K1) = α(G + K1).

(ii) If |V (G )|, |V (H)| ≥ 2 and |E (G )|+ |E (H)| ≥ 1, then
Fs(G + H) = α(G + H).

(iii) If n ≥ 3, then Fs(G�Kn) = α(G�Kn).

(iv) If G and H are solvable with the initial hole in any v such that
the final peg is in the closed neighborhood of v , then
Fs(G�H) ≥ Fs(G )Fs(H).
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Open Problems for Fool’s Solitaire

What other graphs have Fs(G ) < α(G )− 1?

Is there a non-trivial lower bound on Fs(G )?

For what graphs does edge deletion lower the fool’s solitaire
number?

How much can edge deletion lower the fool’s solitaire number?

Fs(G ) = 4 Fs(G ) = 3 Fs(G ) = 3

Figure: Graphs in which Edge Deletion Lowers Fs(G )
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Duotaire

Peg duotaire is played between two players. The first player selects
the initial hole. The players then alternate making peg solitaire
moves on the board. The last player to make a jump wins. For
information on traditional peg duotaire see [14, 16].
B-Gray are currently investigating the peg duotaire on graphs.
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Duotaire - A Competitive Parameter

As a variation, suppose duotaire is played between the maximizer and
the minimizer. The maximizer (minimizer) strives to make the
cardinality of the terminal set as large (small) as possible. When both
players make optimal choices, the cardinality of the resulting terminal
set is fixed. This results in a competitive graph parameter (see
Phillips and Slater [17, 18]).

When the maximizer (minimizer) plays first, we denote this
parameter D+(G ) (D−(G )).
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An Observation About the Duotaire Parameters

Let Ps(G ) denote the minimum number of pegs that can be left on
the graph G . Recall that Fs(G ) denotes the maximum number of
pegs that can be left on the graph G . The following inequalities are
immediate:

Ps(G ) ≤ D−(G ) ≤ Fs(G )

Ps(G ) ≤ D+(G ) ≤ Fs(G ).
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Interesting Results About the Duotaire Parameters

(Part 1)

Theorem - For the path on n vertices, Pn,

(i) D−(Pn) = Ps(Pn) ∈ {1, 2}

(ii) D+(Pn) = Fs(Pn) = ⌊n/2⌋.

So, the difference D+(G )− D−(G ) can be made arbitrarily large!

Robert A. Beeler, Ph.D. (East Tennessee State University )Peg Solitaire on Graphs:Results, Variations, and Open ProblemsApril 20, 2017 82 / 109



Interesting Results About the Duotaire Parameters

(Part 2)

Theorem - For the complete bipartite graph Kn,m with partitions of
size n and m, D−(Kn,m) = n −m and D+(Kn,m) = n −m + 1.

Note that n ≥ m ≥ 2, Ps(Kn,m) = 1 and Fs(Kn,m) = n − 1 [6, 8].
Hence, for any k, ℓ ∈ Z

+, there exists a graph such that
D−(G )− Ps(G ) = k and Fs(G )− D+(G ) = ℓ.
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Interesting Results About the Duotaire Parameters

(Part 3)

Theorem - For the double star DS(n,m), if n ≥ m ≥ 2, then
D−(DS(n,m)) = n +m − 2 and D+(DS(n, n)) = n +m − 3.

Note that this means that both players actually do better when they
play second!
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Why?

Suppose the minimizer goes first and selects the leaf a as the initial
hole. Then the maximizer can jump y over x into a. So instead, the
minimizer should choose x as their initial hole.

b

a x y

d

c
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Why?

Suppose the minimizer goes first and selects the leaf a as the initial
hole. Then the maximizer can jump y over x into a. So instead, the
minimizer should choose x as their initial hole.

b

a x y

d

c

Maximizer’s first jump is forced.
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Why?

Suppose the minimizer goes first and selects the leaf a as the initial
hole. Then the maximizer can jump y over x into a. So instead, the
minimizer should choose x as their initial hole.

b

a x y

d

c

After the minimizer’s first jump.
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Why?

Suppose the minimizer goes first and selects the leaf a as the initial
hole. Then the maximizer can jump y over x into a. So instead, the
minimizer should choose x as their initial hole.

b

a x y

d

c

The maximizer ends the game.
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Why?

Suppose the maximizer goes first and selects the leaf a as the initial
hole.

b

a x y

d

c

The minimizer clearly doesn’t want to jump y over x into a.
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Why?

Suppose the maximizer goes first and selects the leaf a as the initial
hole.

b

a x y

d

c

After the minimizer’s first jump.
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Why?

Suppose the maximizer goes first and selects the leaf a as the initial
hole.

b

a x y

d

c

The maximizer’s first jump is forced.
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Why?

Suppose the maximizer goes first and selects the leaf a as the initial
hole.

b

a x y

d

c

After the minimizer’s second jump.

Robert A. Beeler, Ph.D. (East Tennessee State University )Peg Solitaire on Graphs:Results, Variations, and Open ProblemsApril 20, 2017 92 / 109



Why?

Suppose the maximizer goes first and selects the leaf a as the initial
hole.

b

a x y

d

c

The maximizer ends the game.
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Why?

Suppose the maximizer goes first and instead selects x as the initial
hole.

b

a x y

d

c

The minimizer’s first move is forced.
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Why?

Suppose the maximizer goes first and instead selects x as the initial
hole.

b

a x y

d

c

After the minimizer’s first move, this reduces to the earlier case.
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Open Problems About the Duotaire Parameter

(i) Characterize those graphs where D−(G ) > D+(G ).

(ii) For all k ∈ Z
+, find a graph G such that D−(G )− D+(G ) = k.

(iii) Characterize those graphs where D−(G ) = D+(G ).

(iv) Characterize those graphs where D−(G ) = Ps(G ).

(v) Characterize those graphs where D+(G ) = Fs(G ).
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Another variation

Engbers and Stocker [12] consider a variation of peg solitaire on
graphs in which we allow unjumps in addition to our regular jumps.
Namely, if there is a peg in x , holes in y and z , and xy , yz ∈ E (G ),
then we can jump from x over y into z . This restores the peg in y .

Naturally, we want to know which graphs are solvable in this new
variation.
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Another variation (part 2)

Engbers and Stocker [12] complete characterize the graphs that are
solvable in their variation. Namely:

(i) The star K1,n is still unsolvable for n ≥ 3.

(ii) If G is a non-star graph with maximum degree at least 3, then G
is freely solvable.

(iii) Pn and Cn are solvable iff n is divisible by 2 or 3.
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Reversible Solitaire - Freely Solvable

Showing that non-star graphs with maximum degree at least 3 is
solvable involves two steps.
First, show that we can do a P4-move:

u
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Reversible Solitaire - Freely Solvable (Part 2)

Use the P4-moves to move pegs onto the “widget” below. Then
remove them on the widget!
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Reversible Solitaire - Paths

To show that paths are unsolvable (except when n is divisible by 2 or
3), “weight” any vertex with a 1 if it has a hole. If the vertex has a
peg, then use quaternions:

(i) Weight the vertex vℓ i if ℓ ≡ 0 (mod 3).

(ii) Weight the vertex vℓ j if ℓ ≡ 1 (mod 3).

(iii) Weight the vertex vℓ k if ℓ ≡ 2 (mod 3).

The weight of the configuration is the product of the weights of the
vertices in left to right order. Observe that neither a jump nor an
unjump will change the weight of the configuration. The
configuration is solvable iff its total weight is i , j , or k. Then look at
cases modulo 6.
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Variation - Merging

Engbers and Weber [13] consider a variation in which the move is
replaced by a “merge.” If there are pegs in x and z , a hole in y , and
xy , yz ∈ E , then we can merge the pegs in x and z onto the hole in
y .

1

x y z

2

x y z

3

x y z
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Merging - Results

Again, the goal is to determine which graphs are solvable in this
variation. Some of the results from Engbers and Weber [13].

(i) The star K1,n is still not solvable.

(ii) If n ≥ 2, then the path Pn is solvable.

(iii) The double star DS(n,m) is solvable iff |n −m| ≤ 1.
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Yet another variation

Bullington [11] considers a variation in which a move is defined as:

(i) Suppose that ‘peg’ vertices x and z are adjacent to a ‘hole’
vertex y .

(ii) Add an edge between x and z if there is not one there already.

(iii) Delete the edges xy and yz .

(iv) Choose either x or z to be a ‘hole’ vertex.

z

x

y
z

x

y
z

x

y OR z

x

y

1 2 3a 3b
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Yet another variation (part 2)

Bullington [11] proves the following:

(i) All paths are solvable.

(ii) All traceable and hypotraceable graphs are solvable.

(iii) Kn,m is solvable for n,m ≥ 2.

(iv) If v is a vertex with deg(v ) = m such that G − v has at least m
connected components, then G is not solvable.
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Final Thoughts

Peg solitaire on graphs is an area with many open (and difficult)
problems.

There are a number of variations that one can consider.
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Questions?
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