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Introduction

Tic-Tac-Toe is a two player pencil and paper game traditionally
played on a three by three grid since at least 1884. Players alternate
turns placing marks on the grid.

The first player to have three of their respective marks in a
horizontal, vertical, or diagonal row wins the game.
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Introduction

In the traditional game, perfect play from both players will result in a
draw each time.

In addition to the simplicity of the game, this makes Tic-Tac-Toe
ideal for teaching children the basics of strategic play.

However, generalizations of the game are much more complicated
and often unsolved. See Beck [1] for more information on variations
of Tic-Tac-Toe.
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Generalizing to Graphs

As with the traditional game, the players take turns placing their
respective marks on the vertices of a graph G .

The first player to place their marks on vertices x , y , and z such that
xy ∈ E (G ) and yz ∈ E (G ) wins.
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Some Useful Notes

A strategy is one of the options available to a player where the
outcome depends not only on the player’s actions, but the actions of
others.

A strategy is winning if the player following it must necessarily win,
regardless of the actions of their opponents.

A drawing strategy is one in which the player following it will force a
draw, no matter the actions of their opponents.
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Some Useful Notes

The Fundamental Theorem of Combinatorial Game Theory (see for
example Siegel [3] and Wells [4]) states that in games such as
Tic-Tac-Toe either one player has a winning strategy or both players
have a drawing strategy.

Per Williams [6], we can assume that both players will play perfectly
and will play for the best possible outcome that they can achieve
safely.
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Our Main Result

In this talk, we will give simple necessary and sufficient conditions for
Player One to have a winning strategy on a graph G .

These conditions will be a forbidden subgraph characterization along
the lines of Beineke’s Theorem or Kuratowski’s Theorem (see West
[5] for other examples).

We will show that both players have a drawing strategy on all
remaining graphs. Explicit strategies will be provided for all graphs.
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A Few Words About Forks

A fork is a configuration in which one player will win on the next
turn, regardless of the actions of the second player

X O
X X

O
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Forks in Tic-Tac-Toe on Graphs

As in the traditional game, executing and defending against forks is
central to the strategy of Tic-Tac-Toe on graphs. There are four
forks that are possible:

X

X XX

X

X

X

X

X

K1,3-fork P4-fork C4-fork P5-fork
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Graphs with ∆(G ) ≥ 4

Result 1 If G has the star K1,4 as a subgraph, then Player One has a
winning strategy on G .
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Graphs with ∆(G ) ≤ 2

Result 2 If the maximum degree of G is at most 2, then both players
have a drawing strategy on G .
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Two Graphs with ∆(G ) = 3

Result 3 Suppose that G has H1 or H2 (given below) as a subgraph.
It follows that Player One has a winning strategy on G .

H1 H2
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Other Graphs with Maximum Degree 3?

At this point, we need only consider graphs G such that the
maximum degree is three and the graph has neither H1 nor H2 as a
subgraph. The possibilities for such a graph are:
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The “Easy Case”

Result 4 Both players have a drawing strategy on the first graph on
the previous slide.
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The “Harder Case”

As usual, let Pn denote the graph on the vertices v0,v1,...,vn−1.

Let P(n, 1) denote the graph obtained from Pn by appending two
pendants to v0.

Likewise, let P(n, 2) denote the graph obtained from P(n, 1) by
appending two pendants to vn−1.
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The Case with P(n, 1)

Result 5 Both players have a drawing strategy on P(n, 1).

This is similar to the result for ∆(G ) = 2, except that when given an
option, Player Two takes the neighbor closest to the vertex of degree
3.
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The Case with P(2k + 1, 2)

Result 6 Player One has a winning strategy on P(2k + 1, 2).
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The Case with P(2k , 2)

Result 7 Both players have a drawing strategy on P(2k, 2).

By the above argument, we can assume that Player Two takes both
vertices of degree three and that Player One takes their neighbors of
degree two.

O X X O

Since the path between the X’s is of even length, eventually we reach
a situation like in the figure above.
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Our Main Result (Part 2)

Theorem

Player One has a winning strategy on G if and only if G has K1,4, H1,
H2, or P(2k + 1, 2) as a subgraph. Otherwise both players have a
drawing strategy on G .

K1,4 H1 H2

P(5, 2)
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Two Variations

We also consider two variations.

In the restricted variation, only vertices that form a K3 constitute a
winning set.

In the induced variation, only vertices that form an induced P3

constitute a winning set.

In both cases we can provide a forbidden subgraph characterization.
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Restricted Tic-Tac-Toe on Graphs

Theorem

Player One has a winning strategy on G in restricted Tic-Tac-Toe if
and only if G has R1, R2, R3, R4, or T (2k + 1, 2) (arising from
P(2k + 1, 2)) as a subgraph. Otherwise both players have a drawing
strategy on G .

R1 R2 R3 R4

T (5, 2)
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Induced Tic-Tac-Toe on Graphs

Theorem

Player One has a winning strategy on a graph G in induced
Tic-Tac-Toe on graphs if and only if G contains one of the following
as an induced subgraph: K1,4, H1, H2, I1, I2, I3, I4, I5, I6, or any
element of I(2k + 1, 2) (arising from P(2k + 1, 2)). Otherwise, both
players have a drawing strategy on G .

I1 I2 I3 I4 I5 I6

Robert A. Beeler, Ph.D. (East Tennessee State University )Tic-Tac-Toe on Graphs August 15, 2015 43 / 49



Open Problems - The Pie Rule

The pie rule (also known as the swap rule or Nash’s rule from Hex) is
a common method for mitigating the advantage of going first [2]. If
the pie rule is implemented, then after the first move is made, Player
Two has one of two options:

(i) Player Two lets the move stand. Play then proceeds as normal.

(ii) Player Two “takes” that move. Player One then plays as if they
were the second player.

What is the set of graphs in which each player has a winning strategy
when the pie rule is implemented?
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Open Problem - Double Move Version

As another way to neutralize Player One’s advantage, we might also
consider a variation in which double moves are allowed. There are
several possibilities for variations in which double moves are allowed:

(i) On each turn, both players place two marks instead of one.

(ii) On Player One’s first turn, they place a single mark. On Player
Two’s first turn, they place two marks. Play then proceeds as
normal.

(iii) On Player One’s first turn, they place a single mark. On each
subsequent turn, both players place two marks.

(iv) Player Two places two marks for every mark placed by Player
One.

For each of the above possibilities, determine necessary and sufficient
conditions for each player to have a winning strategy on a graph G .
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Open Problem - Full Play Convention

Suppose that we allow play to continue after one player has captured
a P3 (this is known as full play convention in [1, 3]).

(i) What is the set of graphs in which Player One cannot prevent
Player Two from capturing a P3?

(ii) What is the set of graphs in which Player One can prevent
Player Two from capturing a P3 only at the expense of capturing
their own?

(iii) What is the set of graphs in which Player One can both capture
a P3 and prevent Player Two from capturing a P3?
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Open Problem - Misère Version

In a misère version of Tic-Tac-Toe, the first player to complete a (not
necessarily induced) P3 loses. What are the necessary and sufficient
conditions for each player to have a winning strategy on the misère
version of Tic-Tac-Toe on graphs?
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Open Problem - Other Subgraphs

What if we were to consider other subgraphs (induced or otherwise)
as our winning sets? In particular, if we were to generalize
Connect-Four to graphs, then we would likely assume that both
players were trying to capture a P4. Likewise, we could generalize this
further by assigning each player a family of graphs (which need not
be the same for both players). The first player to capture any graph
in their respective family wins.
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