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Preface

Disclaimer: The following notes are a subset of the original laboratory manual authored by S.P Ellner and J.
Guckenheimer.

These notes for computer labs accompany our textbook Dynamic Models in Biology (Princeton University Press
2006), but they can also be used as a standalone introduction to R as a scripting language for simulating dynamic
models of biological systems. They are based in part on course materials by former TAs Colleen Webb, Jonathan
Rowell and Daniel Fink (then at Cornell University), Lou Gross (University of Tennessee) and Paul Fackler (NC
State University), and on the book Getting Started with Matlab by Rudra Pratap (Oxford University Press). We
also have drawn on the documentation supplied with R (R Development Core Team 2005).

The current home for these notes is https://people.cam.cornell.edu/~dmb/DMBsupplements.html, a
web page for the textbook that we maintain ourselves. If that fails, an up-to-date link should be in the book’s
listing at the publisher (www.pupress.princeton.edu). Parallel notes and script files for MATLAB are also
available at those sites.

Sections 1-7 are an autotutorial introduction to basic R programming (we generally cover them in two or three
2-hour lab sessions, depending on how much previous experience students have had). Those sections contain
many sample calculations. It is important to do them yourselves – type them in at your keyboard and see what
happens on your screen – to get the feel of working in R . All exercises in the middle of a section should be done
immediately when you get to them, and make sure that you have them right before moving on. Exercises at the
ends of sections may be more appropriate as homework exercises.

What is R ?

R is an object-oriented scripting language that combines

• the programming language S developed by John Chambers (Chambers and Hastie 1988, Chambers 1998,
Venables and Ripley 2000).

• a user interface with a few basic menus and extensive help facilities.

• an enormous set of functions for classical and modern statistical data analysis and modeling.

• graphics functions for visualizing data and model output.

R is an open-source project (R Development Core Team 2005) available free via the Web (see below). Originally
a research project in statistical computing (Ihaka and Gentlemen 1996) it is now managed by a team that includes
a number of well-regarded statisticians, and is widely used by statistical researchers and a growing number of
theoretical biologists. The commercial implementation of the S language (called S-plus) offers a “point and
click” interface that R lacks. However for our purposes this is outweighed by the fact that R provides better tools
for dynamic models. The standard installation of R includes extensive documentation, including an introductory
manual and a comprehensive reference manual. At this writing, R mostly follows version 3 of the S language,
but some packages are starting to use version 4 features. These notes refer only to version 3 of S. We also
limit ourselves to graphics functions in the base graphics package, rather than the more advanced grid and lattice
graphics packages.

The main sources for R are CRAN (cran.r-project.org) and its mirrors. You can get the source code, but
most users will prefer a precompiled version. To get one from CRAN, click on the link for your OS, continue to
the folder corresponding to your OS version, and find the appropriate download file for your computer.

For Windows or OS X, R is installed by launching the downloaded file and following the on-screen instructions.
At the end you’ll have an R icon on your desktop that can be used to launch the program. Installing versions
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aov, anova Analysis of variance or deviance
lm, glm Linear and generalized linear models
gam, gamm Generalized additive models and mixed models (in mgcv package)
nls Fit nonlinear models by least-squares (in nls package)
lme,nlme Linear and nonlinear mixed-effects models (in nlme package)
nonparametric regression Various functions in numerous libraries including stats (smoothing

splines, loess, kernel), mgcv, fields, KernSmooth, logspline, sm
Commmander Point-and-click GUI for basic statistics and model fitting, can import data

from SPSS, Minitab or STATA data files (in package Rcmdr)
boot Package: functions for bootstrap estimates of precision and significance
multiv Package: multivariate analysis
survival Package: survival analysis
tree Package: tree-based regression

Table 1: A small selection of the functions and add-on packages in R for statistical modeling and data analysis. There are
many more, but you will have to learn about them somewhere else.

for LINUX or UNIX is more complicated and idiosyncratic (which will not bother the corresponding users), but
many recent LINUX distributions include a fairly up-to-date version of R .

For Windows PCs we strongly suggest that you edit the file Rconsole in R ’s etc folder and change the line
MDI=yes to MDI=no, and also edit Rprofile to un-comment the line options(chmhelp=TRUE) by removing
the # at the start of the line. These changes allow R ’s command and graphics windows to move independently on
the desktop, and selects the most powerful version of the help system.

This document was written at a Windows PC and may sometimes refer to Windows-specific aspects of R . We
will be happy to make changes as these lapses are brought to our attention.

Statistics in R

Some of the important functions and libraries (collections of functions) for data analysis and statistical modeling
are summarized in Table 1. The book by Venables and Ripley (2002) gives a good practical overview, and a list
of available libraries and their contents is available at CRAN (www.cran.r-project.org, click on Package

sources). Maindonald (2004) and Verzani (2002) – both available online – present the basics of statistical data
analysis and graphics in R . For the most part, we are not concerned here with this side of R .

1 Interactive calculations

Launching R opens the console window. This has a few basic menus at the top, whose names and content are
OS-dependent; check them out on your own. The console window is also where you enter commands for R to
execute interactively, meaning that the command is executed and the result is displayed as soon as you hit the
Enter key. For example, at the command prompt >, type in 2+2 and hit Enter; you will see

> 2+2

[1] 4

To do anything complicated, the results from calculations have to be stored in variables. For example, type a=2+2;
a at the prompt and you see

> a=2+2; a
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[1] 4

The variable a has been created, and assigned the value 4. The semicolon allows two or more commands to be
typed on a single line; the second of these (a by itself) tells R to print out the value of a. By default, a variable
created this way is a vector (an ordered list of numbers); in this case a is a vector length 1, which acts just like a
number.

Variable names in R must begin with a letter, and followed by alphanumeric characters. Long names can be
broken up using a period, as in very.long.variable.number.3, but (Windows users beware!) do not use the
underscore character ( ) or blank space as a separator in variable names. Recent versions of R have been progres-
sively removing limitations like this, but for compatibility with older versions of R and other implementations of
S it is best to not use underscores and blanks. R is case sensitive: Abc and abc are not the same variable.

Exercise 1.1 Here are some variable names that cannot be used in R ; explain why: cell maximum size;

4min; site#7 .

Calculations are done with variables as if they were numbers. R uses +, -, *, /, and ^ for addition,
subtraction, multiplication, division and exponentiation, respectively. For example enter

> x=5; y=2; z1=x*y; z2=x/y; z3=x^y; z2; z3

and you should see

[1] 2.5

[1] 25

Even though the variable values for x, y were not displayed, R “remembers” that values have been assigned to
them. Type > x; y to display the values.

If you mis-enter a command, it can be edited instead of starting again from scratch. The ↑ key recalls previous
commands to the prompt. For example, you can bring back the next-to-last command and edit it to

> x=5 y=2 z1=x*y z2=x/y z3=x^y z2 z3

so that commands are not separated by a semicolon. Then press Enter, and you will get an error message.

You can do several operations in one calculation, such as

> A=3; C=(A+2*sqrt(A))/(A+5*sqrt(A)); C

[1] 0.5543706

The parentheses are specifying the order of operations. The command
> C=A+2*sqrt(A)/A+5*sqrt(A)

gets a different result – the same as
> C=A + 2*(sqrt(A)/A) + 5*sqrt(A).

The default order of operations is: (1) Exponentiation, (2) multiplication and division, (3) addition and subtraction.

> b = 12-4/2^3 gives 12 - 4/8 = 12 - 0.5 = 11.5

> b = (12-4)/2^3 gives 8/8 = 1

> b = -1^2 gives -(1^2) = -1

> b = (-1)^2 gives 1
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Table 2: Some of the built-in mathematical functions in R. You can get a more complete list from the Help system:
?Arithmetic for simple, ?log for logarithmic, ?sin for trigonometric, and ?Special for special functions.

abs(x) absolute value
cos(x), sin(x), tan(x) cosine, sine, tangent of angle x in radians
exp(x) exponential function
log(x) natural (base-e) logarithm
log10(x) common (base-10) logarithm
sqrt(x) square root

In complicated expressions it’s best to use parentheses to specify explicitly what you want, such as
> b = 12 - (4/(2^3)) or at least > b = 12 - 4/(2^3) .

R also has many built-in mathematical functions that operate on variables (see Table 2).

An essential R skill is using the help system. If you know that plot is a function that plots things, but you don’t
know exactly how to make the kind of plot you want to make just now, type ?plot at the R command prompt.
If plot doesn’t do what you want, try ??plot) to get a list of many other functions that have “plot” as part of
their name - maybe one of them will do the trick for you. Once you get used to using it regularly, and get used to
the way help pages are structured, the R Help system is in fact enormously helpful. You should also explore the
items available on the Help menu, which include the manuals, FAQs, and ways to search Help files (like ??) and
function names (’Apropos’ on the menu).

Exercise 1.2 : Have R compute the values of
1. 27

27−1and compare it with
(
1− 1

27

)−1

2. sin(π/9), cos2(π/7) [Note that typing cos∧2(pi/7) won’t work!]

3. 27

27−1 + 4 sin(π/9), using cut-and-paste to assemble parts of your past commands

Exercise 1.3 : Do an Apropos on sin via the Help menu, to see what it does. Next do
??sin)

and see what that does (answer: ??sin pulls up all help pages that include ’sin’ anywhere in their title or text.
Apropos just searches function names for ’sin’.)

Exercise 1.4 Use the Help system to find out what the hist function does – most easily, by typing ?hist at the
command prompt. Prove that you have succeeded by doing the following: use the command y=rnorm(5000) to
generate a vector of 5000 random numbers with a Normal distribution, and then use hist to plot a histogram of
the values in y with about 20 bins. Why did we say “about 20” rather than “exactly 20”?

2 An interactive session: fitting a linear regression model

To get a feel for working in R we’ll fit a straight line model (linear regression) to some data. Below are data
on the maximum per-capita growth rate rmax of laboratory populations of the green alga Chlorella vulgaris as a
function of light intensity (µE per m2 per second). These experiments were run during the system-design phase
of the study reported by Fussmann et al. (2000).

Light: 20, 20, 20, 20, 21, 24, 44, 60, 90, 94, 101
rmax: 1.73, 1.65, 2.02, 1.89, 2.61, 1.36, 2.37, 2.08, 2.69, 2.32, 3.67

To analyze these data in R , first enter them as numerical vectors:
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Light=c(20,20,20,20,21,24,44,60,90,94,101);

rmax=c(1.73,1.65,2.02,1.89,2.61,1.36,2.37,2.08,2.69,2.32,3.67);

The function c() combines the individual numbers into a vector.

To see a histogram of the growth rates enter > hist(rmax) which opens a graphics window and displays
the histogram. There are many other built-in statistics functions, for example mean(rmax) gets you the mean,
sd(rmax) and var(rmax) return the standard deviation and variance, respectively.

To see how the algal rate of increase is affected by light intensity,

> plot(Light,rmax)

creates a plot. A linear regression seems reasonable. To perform linear regression we create a linear model using
the lm() function:

> fit = lm(rmax~Light)

This produces no output whatsoever, but it has created fit as an object, i.e. a data structure consisting of multiple
parts, holding the results of a regression analysis with rmax being modeled as a function of Light. Unlike most
statistics packages, R rarely produces automatic summary output from an analysis. Statistical analyses in R are
done by creating a model, and then giving additional commands to extract desired information about the model
or display results graphically.

To get a summary of the results, enter the command > summary(fit). Model objects are set up in R (more
on this later) so that the function summary “knows” that fit was created by lm, and produces an appropriate
summary of results for an object created by lm:

Call:

lm(formula = rmax ~ Light)

Residuals:

Min 1Q Median 3Q Max

-0.5478 -0.2607 -0.1166 0.1783 0.7431

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.580952 0.244519 6.466 0.000116 ***

Light 0.013618 0.004317 3.154 0.011654 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4583 on 9 degrees of freedom

Multiple R-Squared: 0.5251, Adjusted R-squared: 0.4723

F-statistic: 9.951 on 1 and 9 DF, p-value: 0.01165

Adding the regression line to the plot of the data is similarly accomplished by a function taking fit as its input.

> abline(fit)

You can also “interrogate” fit directly. Type > names(fit) to get a list of the components of fit.
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Figure 1: Graphical summary of linear regression analysis. The commands for this plot are in Intro1.R. Data are from the
studies described in Fussmann et al. (2000). Science 290: 1358-1360.

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

Components of an object are extracted using the “$” symbol. For example, > fit$coeffficients yields the
regression coefficients

(Intercept) Light

1.58095214 0.01361776

3 Vectors

Vectors and matrices (1- and 2-dimensional rectangular arrays of numbers) are predefined data types in R . Oper-
ations with vectors and matrices may seem a bit abstract now, but we need them to do useful things later.

We’ve already seen two ways to create vectors in R :
1. A command in the console window or a script file listing the values, such as

> initialsize=c(1,3,5,7,9,11).
2. Using read.table(), for example:

initialsize=read.table("c:\\temp\\initialdata.txt")

(Note: if the file you’re tying to load doesn’t exist, this is not going to work!).

Once it has been created, a vector can be used in calculations as if it were a number (more or less)

> finalsize=initialsize+1; newsize=sqrt(initialsize); finalsize; newsize;

[1] 2 4 6 8 10 12

[1] 1.000000 1.732051 2.236068 2.645751 3.000000 3.316625

Notice that the operations were applied to every entry in the vector. Similarly, commands like initialsize-5,
2*initialsize, initialsize/10 apply subtraction, multiplication, and division to each element of the vec-
tor. The same is true for
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> initialsize^2;

[1] 1 9 25 49 81 121

In R the default is to apply functions and operations to vectors in an element by element manner; anything else (e.g.
matrix multiplication) is done using special notation (discussed below). Note: this is the opposite of MATLAB,
where matrix operations are the default and element-by-element requires special notation.

Functions for vector construction

Some of the main functions for creating and working with vectors are listed in Table 3. A set of regularly spaced
values can be constructed with the seq function, whose syntax is

seq(from,to,by) or seq(from,to,length)
The first form generates a vector (from,from+by,from+2*by,...) with the last entry not being larger than to.
If a value for by is not specified, its value is assumed to be 1 or -1, depending on whether from or to is larger.
The second generates a vector of length evenly-spaced values, running from from to to, for example

> seq(1,3,length=6)

[1] 1.0 1.4 1.8 2.2 2.6 3.0

There are also two shortcuts for creating vectors with by=1:

> 1:8; c(1:8);

[1] 1 2 3 4 5 6 7 8

[1] 1 2 3 4 5 6 7 8

A constant vector such as (1,1,1,1) can be created with rep function, whose basic syntax is
rep(values,lengths). For example,

> rep(3,5)

[1] 3 3 3 3 3

created a vector in which the value 3 was repeated 5 times. rep can also be used with a vector of values and their
associated lengths, for example

> rep( c(3,4),c(2,5) )

[1] 3 3 4 4 4 4 4

The value 3 was repeated 2 times, followed by the value 4 repeated 5 times.

R also has numerous functions for creating vectors of random numbers with various distributions, that are useful
in simulating stochastic models. Most of these have a number of optional arguments, which means in practice
that you can choose to specify their value, or if you don’t a default value is assumed. For example, x=rnorm(100)
generates 100 random numbers with a Normal (Gaussian) distribution having mean=0, standard deviation=1. But
rnorm(100,2,5) yields 100 random numbers from a Gaussian distribution with mean=2, standard deviation=5.

Here, and in the R documentation and help pages, the existence of default values for some arguments of a function
is indicated by writing (for example) rnorm(n, mean=0, sd=1). Since no default value is given for n, the user
must supply one: rnorm() gives an error message.

Some of the functions for creating vectors of random numbers are listed in Table 4. Functions to evaluate the
corresponding distribution functions are also available. For a listing use the Help system: ?Normal, ?Uniform,
?Lognormal, etc. will give lists of the available functions for each distribution family.
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Exercise 3.1 Create a vector v=(1 5 9 13) using seq. Create a vector going from 1 to 5 in increments of 0.2
first by using seq, and then by using a command of the form v=1+b*c(i:j).

Exercise 3.2 Generate a vector of 5000 random numbers from a Gaussian distribution with mean=3, standard
deviation=2. Use the functions mean, sd to compute the sample mean and standard deviation of the values in
the vector, and hist to visualize the distribution.

Exercise 3.3 The sum of the geometric series 1 + r + r2 + r3 + ... + rn approaches the limit 1/(1 − r) for
r < 1 as n → ∞. Take r = 0.5 and n = 10, and write a one-statement command that creates the vector
[r0, r1, r2, . . . , rn] and computes the sum of all its elements. Compare the sum of this vector to the limiting value
1/(1− r). Repeat this for n = 50.

Vector addressing

Often it is necessary to extract a specific entry or other part of a vector. This is done using subscripts, for example

> q=c(1,3,5,7,9,11); q[3]

[1] 5

q[3] extracts the third element in the vector q. You can also access a block of elements using the functions for
vector construction, e.g.

v=q[2:5]; v

[1] 3 5 7 9

This has extracted 2nd through 5th elements in the vector. If you enter v=q[seq(1,5,2)], what will happen?
Try it and see, and make sure you understand what happened.

Extracted parts of a vector don’t have to be regularly spaced. For example

> v=q[c(1,2,5)]; v

[1] 1 3 9

Addressing is also used to set specific values within a vector. For example,

> q[1]=12

changes the value of the first entry in q while leaving all the rest alone, and

seq(from,to,by=1) Vector of evenly spaced values with specified increment (default = 1)
seq(from,to,length) Vector of evenly spaced values with specified length
c(u,v,...) Combine a set of numbers and/or vectors into a single vector
rep(a,b) Create vector by repeating elements of a by amounts in b

hist(v) Histogram plot of value in v
mean(v),var(v),sd(v) Population mean, variance, standard deviation estimated from values in v

cor(v,w) Correlation between two vectors

Table 3: Some important R functions for creating and working with vectors. Many of these have other optional arguments;
use the help system (e.g. ?cor) for more information. Note that statistical functions such as var regard the values as samples
from a population (rather than a list of value for the entire population) and compute an estimate of the population statistic; for
example sd(1:3)=1.
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rnorm(n,mean=1,sd=1) Gaussian distribution(mean=mu, standard deviation=sd)
runif(n,min=0,max=1) Uniform distribution on the interval (min,max)
rbinom(n,size,prob) Binomial distribution with parameters size=#trials N , prob=probability of

success p
rpois(n,lambda) Poisson distribution with mean=lambda
rbeta(n,shape1,shape2) Beta distribution on the interval [0, 1] with shape parameters shape1, shape2

Table 4: Some of the main R function for generating vectors of n random numbers. To create random matrices, these vectors
can be reshaped using the matrix() function, for example: matrix(rnorm(50*20),50,20) generates a 50× 20 matrix of
Gaussian(0,1) random numbers.

> q[c(1,3,5)]=c(22,33,44)

changes the 1st, 3rd, and 5th values.

Exercise 3.4 write a one-line command to extract a vector consisting of the second, first, and third elements of q
in that order.

Exercise 3.5 Write a script file that computes values of z = (x−1)
(x+1) and w = sin(x2)

x2 for x = 1, 2, 3, · · · , 12 and
plots both of these as a function of x with the points connected by a line.

Vector orientation

You may be wondering if vectors in R are row vectors or column vectors (if you don’t know what those are, don’t
worry: we’ll get to it later). The answer is “both and neither”. Vectors are printed out as row vectors, but if you
use a vector in an operation that succeeds or fails depending on the vector’s orientation, R will assume that you
want the operation to succeed and will proceed as if the vector has the necessary orientation. For example, R will
let you add a vector of length 5 to a 5× 1 matrix or to a 1× 5 matrix, in either case yielding a matrix of the same
dimensions. The fact that R wants you to succeed is both good and bad – good when it saves you needless worry
about details, bad when it masks an error that you would rather know about.

4 Matrices

A matrix is a two-dimensional array of numbers. Like vectors, matrices can be created by reading in values from
a data file, using the read.table function. Matrices of numbers can also be entered by creating a vector of the
matrix entries, and then reshaping them to the desired number of rows and columns using the matrix function.
For example

> X=matrix(c(1,2,3,4,5,6),2,3)

takes the values 1 to 6 and reshapes them into a 2 by 3 matrix.

> X

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Note that values in the data vector are put into the matrix column-wise, by default. You can change this by using
the optional parameter byrow). For example
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matrix(v,m,n) m× n matrix using the values in v
data.entry(A) call up a spreadsheet-like interface to edit the values in A
diag(v,n) diagonal n× n matrix with v on diagonal, 0 elsewhere
cbind(a,b,c,...) combine compatible objects by binding them along columns
rbind(a,b,c,...) combine compatible objects by binding them along rows
outer(v,w) “outer product” of vectors v,w: the matrix whose (i, j)th element is

v[i]*w[j]

iden(n) n× n identity matrix (in boot library)
zero(n,m) n×m matrix of zeros (in boot library)
dim(X) dimensions of matrix X. dim(X)[1]=# rows, dim(X)[2]=# columns
apply(A,MARGIN,FUN) apply the function FUN to each row of A (if MARGIN=1) or each column

of A (if MARGIN=2). See ?apply for details and examples.

Table 5: Some important functions for creating and working with matrices. Many of these have additional optional
arguments; use the Help system for full details.

> A=matrix(1:9,3,3,byrow=T); A

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

R will re-cycle through entries in the data vector, if need be, to fill out a matrix of the specified size. So for
example matrix(1,50,50) creates a 50× 50 matrix of all 1’s.

Exercise 4.1 Use a command of the form X=matrix(v,2,4) where v is a data vector, to create the following
matrix X

[,1] [,2] [,3] [,4]

[1,] 1 1 1 1

[2,] 2 2 2 2

Exercise 4.2 Use rnorm and matrix to create a 5 × 7 matrix of Gaussian random numbers with mean 1 and
standard deviation 2.

Another useful function for creating matrices is diag. diag(v,n) creates an n× n matrix with data vector v on
its diagonal. So for example diag(1,5) creates the 5 × 5 identity matrix, which has 1’s on the diagonal and 0
everywhere else.

Finally, one can use the data.entry function. This function can only edit existing matrices, but for example
A=matrix(0,3,4); data.entry(A)

will create A as a 3× 4 matrix, and then call up a spreadsheet-like interface in which the values can be changed to
whatever you need.

4.1 cbind and rbind

If their sizes match, vectors can be combined to form matrices, and matrices can be combined with vectors or
matrices to form other matrices. The functions that do this are cbind and rbind.

cbind binds together columns of two objects. One thing it can do is put vectors together to form a matrix:

> A=cbind(1:3,4:6,7:9); A
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[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

Remember that R interprets vectors as row or column vectors according to what you’re doing with them. Here it
treats them as column vectors so that columns exist to be bound together. On the other hand,

> B=rbind(1:3,4:6); B

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

treats them as rows. Now we have two matrices that can be combined.

Exercise 4.3 Verify that rbind(A,B) works, cbind(A,A) works, but cbind(A,B) doesn’t. Why not?

4.2 Matrix addressing

Matrix addressing works like vector addressing except that you have to specify both the row and column, or range
of rows and columns. For example q=A[2,3] sets q equal to 8, which is the (2nd row, 3rd column) entry of the
matrix A , and

> A[2,2:3];

[1] 5 8

> B=A[2:3,1:2]; B

[,1] [,2]

[1,] 2 5

[2,] 3 6

There is an easy shortcut to extract entire rows or columns: leave out the limits.

> first.row=A[1,]; first.row

[1] 1 4 7

> second.column=A[,2]; second.column;

[1] 4 5 6

As with vectors, addressing works in reverse to assign values to matrix entries. For example,

A[1,1]=12; A

[,1] [,2] [,3]

[1,] 12 4 7

[2,] 2 5 8

[3,] 3 6 9

The same can be done with blocks, rows, or columns, for example

> A[1,]=runif(3); A

[,1] [,2] [,3]

[1,] 0.985304 0.743916 0.00378729
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[2,] 2.000000 5.000000 8.00000000

[3,] 3.000000 6.000000 9.00000000

Exercise 4.4 Use runif to construct a 5×5 matrix B of random numbers with a uniform distribution between 0
and 1. (a) Extract from it the second row, the second column, and the 3×3 matrix of the values that are not at the
margins (i.e. not in the first or last row, or first or last column). (b) Use seq to replace the values in the first row
of B by 2 5 8 11 14.

4.3 Matrix operations and matrix-vector multiplication

A numerical function applied to a matrix acts element-by-element.

> A=matrix(c(1,4,9,16),2,2); A; sqrt(A);

[,1] [,2]

[1,] 1 9

[2,] 4 16

[,1] [,2]

[1,] 1 3

[2,] 2 4

The same is true for scalar multiplication and division. Try 2*A, A/3 and see what you get.

If two matrices (or two vectors) are the same size, then you can do element-by-element addition, subtraction, mul-
tiplication, division, and exponentiation: (A+B, A-B, A*B, A/B, A B). Matrix × matrix and matrix × vector
multiplication (when they are of compatible dimensions) is indicated by the special notation %*%. Remember,
element-by-element is the default in R. This requires some attention, because R ’s eagerness to make things
work can sometimes let errors get by without warning. So for example

v=1:2; A*v

[,1] [,2]

[1,] 1 9

[2,] 8 32

A is a 2× 2 matrix, and v is a vector of size 2, so the matrix-vector product Av is legitimate. However, Av should
be a vector, not a matrix. Since you (incorrectly) “asked” for element-by-element multiplication, that’s what R
did, “recycling” through the elements of v when it ran out of entries in v before it ran out of entries in A. What
you should have done is

> A%*%v

[,1]

[1,] 19

[2,] 36

5 Iteration (“Looping”)

5.1 For-loops

Loops make it easy to do the same operation over and over again, for example:
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• Making population forecasts 1 year ahead, then 2 years ahead, then 3, etc.

• Updating the state of every neuron in a model network based on the inputs it received in the last time
interval.

• Simulating a biochemical reaction network multiple times with different values for one of the parameters.

There are two kinds of loops in R : for loops, and while loops. A for loop runs for a specified number of steps.
These are written as

for (var in seq) {

commands

}

Here’s an example (in Loop1.R):

# initial population size

initsize=4;

# create vector to hold results and store initial size

popsize=rep(0,10); popsize[1]=initsize;

# calculate population size at times 2 through 10, write to Command Window

for (n in 2:10) {

popsize[n]=2*popsize[n-1];

x=log(popsize[n]);

cat(n,x,"\n");

}

plot(1:10,popsize,type="l");

The first time through the loop, n=2. The second time through, n=3. When it reaches n=10, the for-loop is
finished and R starts executing any commands that occur after the end of the loop. The result is a table of the log
population size in generations 2 through 10.

Note also the cat function (short for “concatenate”) for printing results to the console window. cat converts
its arguments to character strings, concatenates them, and then prints them. The "\n" argument is a line-feed
character (as in the C language) so that each (n,x) pair is put on a separate line.

Several for loops can be nested within each other, which is needed for working with matrices as in the example
below. It is important to notice that the second loop is completely within the first. Loops must be either nested
(one completely inside the other) or sequential (one starts after the previous one ends).

A=matrix(0,3,3); (1)

for (row in 1:3) { (2)

for (col in 1:3) { (3)

A[row,col]=row*col (4)

} (5)

} (6)

A; (7)

Type this into a script file and run it; the result should be
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[,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

[3,] 3 6 9

Line 1 creates A as a matrix of all zeros - this is an easy way to create a matrix of whatever size you need, which
can then be filled in with meaningful values as your program runs. Then two nested loops are used to fill in the
entries. Line 2 starts a loop over the rows of A, and immediately in line 3 a loop over the columns is started. To
fill in the matrix we need to consider all possible values for the pair (row, col). So for row=1, we need to consider
col=1,2,3. Then for row=2 we also need to consider col=1,2,3, and the same for row=3. That’s what the nested
for-loops accomplish. For row=1 (as requested in line 2), the loop in lines 3-5 is executed until it ends. Then we
get to the end in line 6, at which point the loop in line 2 moves on to row=2, and so on.

Nested loops also let us automate the process of running a simulation many times, for example with different
parameters or to look at the average over many runs of a stochastic model. For example (Loop2.R),

p=rep(0,5); (1)

for (init in c(1,5,9)){ (2)

p[1]=init; (3)

for (n in 2:5) { (4)

p[n]=2*p[n-1] (5)

cat(init,n,p[n],"\n"); (6)

} (7)

} (8)

Line 1 creates the vector p. Line 2 starts a loop over initial population sizes Lines 4-7 does a ”population growth”
simulation Line 8 then closes the loop over initial sizes

The result when you run Loop2.R is that the “population growth” calculation is done repeatedly, for a series of
values of the initial population size. To make the output a bit nicer we can add some headings as the program runs
- source Loop3.R and then look at the file to see how the formatting was done.

If this discussion of looping doesn’t make sense to you, stop now and get help. Loops are essential from here on
out.

Exercise 5.1 : Imagine that while doing fieldwork in some distant land you and your assistant have picked up a
parasite that grows exponentially until treated. Your case is more severe than your assistant’s: on return to Ithaca
there are 400 of them in you, and only 120 in your assistant. However, your field-hardened immune system is
more effective. In your body the number of parasites grows by 10 percent each day, while in your assistant’s it
increases by 20 percent each day. That is, j days after your return to Ithaca your parasite load is n(j) = 400(1.1)j

and the number in your assistant is m(j) = 120(1.2)j .

Write a script file Parasite1.R that uses a for-loop to compute the number of parasites in your body and your
assistant’s over the next 30 days, and draws a single plot of both on log-scale (i.e. log(n(j)) and log(m(j))
versus time for 30 days).

Exercise 5.2 : Write a script file that uses for-loops to create the following 5×5 matrix A. Think first: do you want
to use nested loops, or sequential?

0 1 2 3 4
0.1 0 0 0 0
0 0.2 0 0 0
0 0 0.3 0 0
0 0 0 0.4 0
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x < y less than
x > y greater than
x <= y less than or equal to
x >= y greater than or equal to
x == y equal to

Table 6: Some comparison operators in R . Use ?Comparison to learn more.

5.2 While-loops [advanced]

A while loop lets an iteration continue until some condition is satisfied. For example, we can solve a model
until some variable reaches a threshold. The format is

while(condition){

commands

}

The loop repeats as long as the condition remains true. Loop4.R contains an example similar to the for-loop
example; source it to get a graph of population sizes over time. A few things to notice about the program:

1. Although the condition in the while loop said while(popsize<1000) the last population value was >
1000. That’s because the loop condition is checked before the commands in the loop are executed. When
the population size was 640 in generation 6, the condition was satisfied so the commands were executed
again. After that the population size is 1280, so the loop is finished and the program moves on to statements
following the loop.

2. Since we don’t know in advance how many iterations are needed, we couldn’t create in advance a vector to
hold all the results. Instead, a vector of results was constructed by starting with the initial population size
and appending each new value as it is calculated. .

3. When the loop ends and we want to plot the results, the “y-values” are popsize, and the x values need to be
0:something. To find “something”, the length function is used to find the length of popsize.

Within a while-loop it is often helpful to have a counter variable that keeps track of how many times the loop has
been executed. In the following code, the counter variable is n:

n=1;

while(condition) {

commands

n=n+1;

}

The result is that n=1 is true while the commands (whatever they are) are being executed for the first time. After-
ward n is set to 2, and this remains true during the second time that the commands are executed, and so on. One
use of counters is to store a series of results in a vector or matrix: on the nth time through the commands, put the
results in the nth entry of the vector, nth row of the matrix, etc.

The conditions controlling a while loop are built up from operators that compare two variables (Table 6). These
operators return a logical value of TRUE or FALSE. For example, try:

> a=1; b=3; c=a<b; d=(a>b); c; d;
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The parentheses around (a>b) are optional but can be used to improve readability in script files.

When we compare two vectors or matrices of the same size, or compare a number with a vector or matrix,
comparisons are done element-by-element. For example,

> x=1:5; b=(x<=3); b

[1] TRUE TRUE TRUE FALSE FALSE

R also does arithmetic on logical values, treating TRUE as 1 and FALSE as 0. So sum(b) returns the value 3,
telling us that 3 entries of x satisfied the condition (x<=3). This is useful for running multiple simulations and
seeing how often one outcome occurred rather than another.

Exercise 5.3 Write a script file Parasite2.R that uses a while-loop to compute the number of parasites in your
body and your assistant’s so long as you are sicker than your assistant (i.e. so long as n > m) and stops when
your assistant is sicker than you. Use a copy of Parasite1.R as your starting point.

More complicated conditions are built by using logical operators to combine comparisons:

! Negation

& && AND

| || OR

OR is non-exclusive, meaning that x|y is true if x is true, if y is true, or if both x and y are true. For example:
>> a=c(1,2,3,4); b=c(1,1,5,5); (a<b)&(a>3); (a<b)|(a>3);

An alternative to (x==y) is the identical function. identical(x,y) returns TRUE if x and y are exactly
the same, else FALSE. The difference between these is that if (for example) x and y are vectors (x==y) will return
a vector of values for element-by-element comparisons, while identical(x,y) returns a single value: TRUE if
each entry in x equals the corresponding entry in y, otherwise FALSE. You can use ?Logical to read more about
logical operators.

Exercise 5.4 Use the identical function to construct a one-line command that returns TRUE if each en-
try in a vector rnorm(5) is positive, and otherwise returns FALSE. Hint: rep works on logical variables, so
rep(TRUE,5) returns the vector (TRUE,TRUE,TRUE,TRUE,TRUE).

6 Branching

Logical conditions also allow the rules for “what happens next” in a model to depend on the current values of
state variables. The if statement lets us do this; the basic format is

if(condition) {

some commands

}else{

some other commands

}

An if block can be set up in other ways, but the layout above, with the }else{ line to separate the two sets of
commands, can always be used.

If the “else” is to do nothing, you can leave it out:

if(condition) {
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commands

}

Exercise 6.1 Look at and source a copy of Branch1.R to see an if statement which makes the population growth
rate depend on the current population size.

More complicated decisions can be built up by nesting one if block within another, i.e. the “other commands”
under else can include a second if block. Branch2.R uses this method to have population growth tail off in
several steps as the population size increases:

for (i in 1:50) { (1)

if(popnow<250){ (2)

popnow=popnow*2; (3)

}else{ (4)

if(popnow<500){ (5)

popnow=popnow*1.5 (6)

}else{ (7)

popnow=popnow*0.95 (8)

} (9)

} (10)

popsize=c(popsize,popnow); (11)

} (12)

What does this accomplish?

• If popnow is still < 250, then line 3 is executed growth by a factor of 2 occurs. Since the if condition was
satisfied, the entire else block (line numbers 5-10 above) isn’t looked at; R jumps line (11) and continues
from there.

• If popnow is not < 250, R moves on to the else on line 4, and immediately encounters the if on line 5.

• If popnow is < 500 the growth factor of 1.5 applies, and R then jumps to the end and continues from there.

• If neither of the two if conditions is satisfied, the final else block is executed and population declines by
5% instead of growing.

Exercise 6.2 Modify Parasite1.m so that there is random variation in parasite success, depending on whether
or not conditions on a given day are stressful. Specifically, on “bad days” the parasites increase by 10% while
on “good days” they are beaten down by your immune system and they go down by 10%, and similarly for your
assistant. That is,

Bad days: n(j + 1) = 1.1n(j), m(j + 1) = 1.2m(j)

Good days: n(j + 1) = 0.9n(j), m(j + 1) = 0.8m(j)

Do this by using runif(1) and an if statement to “toss a coin” each day: if the random value produced by unif

for that day is < 0.5 it’s a good day, and otherwise it’s bad. Make sure that your script does a new “coin toss” for
each day, but that the same toss applies to both you and your assistant.

7 Numerical Matrix Algebra

R has functions for matrix-algebra calculations that use “industry standard” numerical libraries. At this writing
R is completing a transition from older (LINPACK, EISPACK) to newer (BLAS, LAPACK) libraries. Some
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iden(n) n× n identity matrix (in boot library)
zero(n,m) n×m matrix of zeros (in boot library)
outer(v,w) outer product of vectors v and w; very useful for avoiding loops
solve(A) inverse of matrix A
solve(A,B) solution x of the linear system Ax = b for each column b of the matrix B
det(A) determinant of the matrix A
norm(A) matrix norm of A (several options)
eigen(A) eigenvalues and eigenvectors
t(A) transpose of A
apply(A,MARGIN,FUN) apply a function FUN to the rows (MARGIN=1) or columns (MARGIN=2) of

matrix A, and return all resulting values as a vector. See ?apply for details and
examples. Very useful for avoiding loops

sapply(A,FUN) apply a function FUN to each element in matrix A, returning a vector of values.

Table 7: Some important functions for creating and working with matrices in R . Many of these have additional optional
arguments; use the Help system for full details.

functions exist in two versions corresponding to these, with the default generally being the newer libraries. Some
of these functions are listed in Table 7.

Some of R ’s matrix functions only work on square matrices and will return an error if A is not square, in particular
functions for computing eigenvalues and eivenvectors. For the remainder of this section we only consider square
matrices.

7.1 Eigenvalues and eigenvectors

Because eigenvalues are so important for studying dynamic models, we will now study eigen in some detail.
Recall that if Aw = λw (for A a square matrix, w a nonzero column vector, and λ a real or complex number) then
λ is called an eigenvalue and w is the corresponding eigenvector of A. If v is a row-vector such that vA = λv,
then v is called a left eigenvector of A. The left eigenvalues for a matrix are the same as the (right) eigenvalues.

We are often most interested in the dominant eigenvalue, which depending on context (discrete versus continuous
time models) means either the one with the largest absolute value, or the one with the largest real part.1 In R , the
abs function computes the absolute value of a real or complex number (and acts element-by-element on vectors
and matrices).

eigen returns eigenvalues sorted by absolute value, with the largest first. For example,

A=matrix(1:9,3,3); vA=eigen(A); vA;

$values

[1] 1.611684e+01 -1.116844e+00 -4.054215e-16

$vectors

[,1] [,2] [,3]

[1,] -0.4645473 -0.8829060 0.4082483

[2,] -0.5707955 -0.2395204 -0.8164966

[3,] -0.6770438 0.4038651 0.4082483

As with the output from lm in our first interactive session (you remember lm . . . ) vA is a compound object
composed of two components, whose names are values and vectors. The “$” is used to extract components

1The general definition of absolute value, which covers both real and complex numbers, is |a+ ib| =
√
a2 + b2, where i =

√
−1.
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of a compound object. For example vA$values is the values part of vA, a vector consisting of the sorted
eigenvalues:

vA$values

[1] 1.611684e+01 -1.116844e+00 -4.054215e-16

As noted above, va$values[1] is the eigenvalue with the largest absolute value.

The vectors component is a matrix whose columns are the corresponding eigenvectors, sorted in the same order
as the eigenvalues. That is,

j=1; A%*%vA$vectors[,j]-vA$values[j]*vA$vectors[,j];

[,1]

[1,] 0.000000e+00

[2,] -3.552714e-15

[3,] -3.552714e-15

This calculation verifies the definition of eigenvalues and eigenvectors: Av1 = λ1v1, so A~v1 − λ1~v1 = ~0. The
[2,] and [3,] values above are really zeros, but because eigenvalues and eigenvectorsare computed numerically,
there is a small amount of numerical error.

Exercise 7.1 Verify that the output is also (0, 0, 0), apart from numerical error, for j=2 and j=3. Explain in words
what these calculations show.

Exercise 7.2 Enter the command names(vA) and see what results. From this, infer what the names function
does. Enter the command names(A) and infer the meaning of the object NULL in R . Check your guess by using
the Help menu on the console window: select R language (standard) and type NULL into the popup window that
appears.

To get the left eigenvectors of a matrix, we use the fact that the left eigenvectors of a matrix A are the eigenvectors
of its transpose, t(A). So

vLA=eigen(t(A))$vectors

gets you the left eigenvectors of A.

Exercise 7.3 Compute vLA[,j]%*%A-vA$values[j]*vLA[,j] to verify the last claim about left eigenvectors,
for j=1 to 3.

Eigenvector scalings: For a transition matrix model, the dominant right eigenvector w (i.e. the eigenvector
corresponding to the eigenvalue with largest absolute value) is the stable stage distribution, so we are most in-
terested in relative proportions. To get those, w=w/sum(w). The dominant left eigenvector v is the reproductive
value, and it is conventional to scale those relative to the reproductive value of a newborn. If newborns are class
1: v=v/v[1].

Exercise 7.4 : Write a script file which applies the above to the matrices

A =

 1 −5 0
6 4 0
0 0 2

 B =

 0 1 5
0.6 0 0
0 0.4 0.9


finding all the eigenvalues and then extracting the dominant one and the corresponding left and right eigenvectors.
For B, use the scalings defined above.

7.2 Eigenvalue sensitivities and elasticities

For an n× n matrix A with entries aij , the sensitivities sijand elasticities eijcan be computed as
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sij =
∂λ

∂aij
=

viwj
〈v, w〉

eij =
aij
λ
sij (1)

where λ is the dominant eigenvalue, v and w are dominant left and right eigenvalues, and 〈v, w〉 is the inner
product of v and w, computed in R as sum(v*w). So once λ, v, and w have been found and stored as variables,
it just takes some for-loops to compute the sensitivies and elasticities.

vA=eigen(A); lambda=vA$values[1];

w=vA$vectors[,1]; w=w/sum(w);

v=eigen(t(A))$vectors[,1]; v=v/v[1];

vdotw=sum(v*w);

s=A; n=dim(A)[1];

for(i in 1:n) {

for(j in 1:n) {

s[i,j]=v[i]*w[j]/vdotw;

}

}

e=(s*A)/lambda;

Note how all the elasticities are computed at once in the last line. In R that kind of “vectorized” calculation is
much quicker than computing entries one-by-one in a loop. Even better is to use a built-in function that operates
at the vector or matrix level. In this case we can use outer to completely eliminate the nested do-loops:

vA=eigen(A); lambda=vA$values[1];

w=vA$vectors[,1]; w=w/sum(w);

v=eigen(t(A))$vectors[,1]; v=v/v[1];

s=outer(v,w)/sum(v*w);

e=(s*A)/lambda;

Vectorizing code to avoid or minimize loops is an important aspect of efficient R programming.

Exercise 7.5 Construct the transition matrix A, and then find λ, v, w for an age-structured model with the follow-
ing survival and fecundity parameters. Then use those to construct the elasticity matrix for A.

Age-classes 1-6 are genuine age classes with survival probabilities (p1p2 · · · p6) = (0.3, 0.4, 0.5, 0.6, 0.6, 0.7)

Note that pj = aj+1,j , the chance of surviving from age j to age j + 1, for these ages. You can create a vector p
with the values above and then use a for-loop to put those values into the right places in A.

Age-class 7 are adults, with survival 0.9 and fecundity 12.

Results: λ = 1.0419

A =



0 0 0 0 0 0 12
.3 0 0 0 0 0 0
0 .4 0 0 0 0 0
0 0 .5 0 0 0 0
0 0 0 .6 0 0 0
0 0 0 0 .6 0 0
0 0 0 0 0 .7 .9


w = (0.6303, 0.1815, 0.0697, 0.0334, 0.0193, 0.0111)
v = (1, 3.4729, 9.0457, 18.8487, 32.7295, 56.8328, 84.5886)
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7.3 Finding the eigenvalue with largest real part [advanced]

For the Jacobian matrix of a differential equation model, the dominant eigenvalue is the one with the largest real
part. To find this, and the associated eigenvector, we need to extract the real parts of the eigenvalues and locate
the largest one.

Use the help system – (?complex) – to see the R functions for working with complex numbers. The one we need
now is Re, which extracts the real parts of complex numbers.

Use data.entry to create the matrix

A =

 3 0 0
2 2 −3
0 3 1


and you should find that eigen(A)$values are

[1] 1.5+2.95804i 1.5-2.95804i 3.0+0.00000i.
The first two are a complex conjugate pair with absolute value 3.316625 (mod(eigen(A)$values) gets you the
absolute values of the eigenvalues), but the third one has the largest real part.

To have R do this for you, we use the which function to find which eigenvalue is dominant (i.e., which has the
largest real part). Run the code below, and follow what it’s doing; see ?which and ?max if you need to.

vA=eigen(A)$values; # find the eigenvalues

rmax=max(Re(vA)); # find the largest Real part of any eigenvalue

j=which(Re(vA)==rmax); # which eigenvalue is dominant?

lmax=vA[j]; # dominant eigenvalue

vmax=eigen(A)$vectors[,j]; # dominant eigenvector

Exercise 7.6 Try the above on A=diag(c(1,2,3)) and see what you get for j,r,lmax and vmax. Try it again
for A=diag(c(1,2,sqrt(as.complex(-9)))) and A=diag(c(3,1,3)), and make sure that you understand
what happens in each case.

8 Creating new functions

Functions (often called subroutines in other computing languages) allow you to break a program into subunits.
This makes complex problems easier to program, and helps us (and others) to understand the logical flow of
programs. Each function is an independent little program, performing one task or a few related tasks, and returning
the results. A program can then be written to call on various functions to perform different tasks. Each function
can be written and tested independently, which leads naturally to the generally recommended modular style of
program construction.

The basic syntax for creating a function is as follows. Suppose [for the sake of an easy example] you want
a function mysquare that produces sums of squares: given vectors v and w, it returns a vector consisting of the
element-by-element sums of the squares of the elements in the two vectors. The syntax for doing that is as follows:

mysquare=function(v,w) {

u=v^2+w^2;

return(u)

}

This code effectively adds mysquare as a new R command, just like sin or log. The variable u is internal to the
function; if you use mysquare in a program, the program won’t “know” the value of u.
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Exercise 8.1 Type the above into a script file and run it, and then do q=mysquare(1:4,1:4); q in the console
window.

Schematically,

function.name=function(argument1,argument2,...) {

command;

command;

...

command;

return(value)

}

Functions can be placed anywhere in a script file. Once the code for a function has been executed within a session,
the new function can be treated like any other R command.

Functions can return several different values, by combining them into a list with named parts.

mysquare2=function(v,w) {

q=v^2; r=w^2

return(list(v.squared=q,w.squared=r))

}

You can then extract the components in the usual way.

> x=mysquare2(1:4,2:5); names(x);

[1] "v.squared" "w.squared"

> x$v.squared

[1] 1 4 9 16

Exercise 8.2 Write a script that defines a function DominantRealPart, which takes as input a single matrix, and
returns the largest real part of any of its eigenvalues.

Exercise 8.3 [advanced] Write a script that defines a function domeig which takes as input a single matrix, and
returns a list with components value and vector, which are respectively the eigenvalue with largest absolute
value, and the corresponding eigenvector scaled so that the absolute value of its entries sum to 1. (If v is a vector,
then v/sum(abs(v)) will have the property that the absolute values of its entries sum to 1).

Exercise 8.4 [advanced] Modify your function from the last exercise so that it has a third, optional argument j with
default value 1. Call the function oneeig. If no value of j is specified, then oneeig should act just like domeig.
If a value of j is specified, it should return the jth largest eigenvalue (in absolute value), and the corresponding
eigenvector scaled as in the last exercise.

9 Solving systems of differential equations

Built-in R functions make it relatively easy to do some complicated things. One important example is finding
numerical solutions for a system of differential equations

dx

dt
= f(t, x).

Here x is a vector assembled from quantities that change with time, and the vector field f gives their rates of
change. The Hodgkin-Huxley model from the last section is one example. Here we start with the simple model
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of a gene regulation network from Gardner et al. (2000) that is described in the textbook. The model is

du

dt
= −u+

αu
1 + vβ

dv

dt
= −v + αv

1 + uγ

(2)

The variables u, v in this system are functions of time. They represent the concentrations of two repressor proteins
Pu, Pv in bacteria that have been infected with a plasmid containing genes that code for Pu and Pv . The plasmid
also contains promoters, with Pu a repressor of the promoter of the gene coding for Pv and vice-versa.

The equations are a simple compartment model describing the rates at which u and v change with time. Pu

degrades at rate 1 (so the loss rate is−1×u) and it is produced at a rate
αu

1 + vβ
, which is a decreasing function of

v. The exponent β models the cooperativity in the repression of Pu synthesis by Pv . The processes of degradation

and synthesis combine to give the equation for
du

dt
, and the equation for

dv

dt
is similar.

There are no explicit formulas to solve this pair of equations, but we can interpret what the equations mean
geometrically. At each point of the (u, v) plane, we regard (dudt ,

dv
dt ) as a vector that gives the direction and

magnitude for how fast (u, v) jointly change as a function of t. Solutions to the equations give rise to parametric
curves (u(t), v(t)) whose tangent vectors (dudt ,

dv
dt ) are those specified by the equations.

To plot the vector field, first run the script DMBpplane.R (this script is based on pplane.R by Daniel Kaplan,
Department of Mathematics, Macalester College, and has been modified and used here with his permission). This
script includes a function that computes the vector field for model (2) with the assumption that αu = αv:

toggle=function(u,v,parms) {

du= -u + parms[1]/(1+v^parms[2]);

dv= -v + parms[1]/(1+u^parms[3]);

return(c(du,dv));

}

Note how this function is set up:

• Its input arguments are the two state variables u,v and a parameter vector parms. Even if parms is not
used by the function, it must be included in the list of arguments (you can set parms=0).

• The function returns the vector field as a vector.

• The computations are set up so they will go through if u and v are matrices of equal size. This eliminates
the needs for for-loops in many of the computations that we will use to study vector fields.

Use this setup for any vector field that you want to study using the functions in DMBpplane.R.

The function phasearrows (also in DMBpplane.R) can then be used to plot the vector field, as in this example:

phasearrows(fun=toggle,xlim=c(0,3),ylim=c(0,3),resol=25,parms=c(3,2,2))

In this statement, fun is the name of the function that calculates the vector field, xlim and ylim define the range
of values for the plot, and setting resol=25 means that arrows showing the vector field will be drawn at a 25×25
grid of points within the plotting region. The parameter vector parms is passed to the vector field function – this
argument can be omitted if the vector field function does not use parms.

Exercise 9.1 Run DMBpplane.R to create the toggle function, and then use the command above to plot the
vector field.
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We can think of solutions to (2) as curves in the plane that “follow the arrows”. Given a starting point
(u0, v0), the mathematical theory discussed in the textbook proves that there is a unique solution (u(t), v(t))
with (u(0), v(0)) = (u0, v0). The process of finding the solution numerically is called numerical integration.
Methods for numerical integration build up an approximate solution by adding short segments of an approximate
solution curve, one after another.

R ’s numerical ODE solvers are in the deSolve package. Download this (if necessary) from CRAN, and then use
the command library(deSolve) to load it into your R session.

Exercise 9.2 After you load the deSolve library, use ?rk4 to look at the syntax for this function.

To use R ’s ODE solvers, the first step is to write a function to evaluate the vector field in the specific format
required by the solvers. Here’s what that looks like for the toggle switch model:

Toggle=function(t,y,parms) {

u=y[1]; v=y[2];

du= -u + parms[1]/(1+v^parms[2]);

dv= -v + parms[1]/(1+u^parms[3]);

dY=c(du,dv);

return(list(dY));

}

There’s a bit to digest in that. Here are the things to note:

1. The function must have input arguments (t,y,parms), even if only the state vector y is used to compute
the vector field. Here t is time, y is the state vector, and

2. parms is again a vector of parameter values for the function. This allows you to see how solutions change
as parameters are varied, without having to re-write and re-run the function. It also simplifies the process
of fitting differential equations to data.

3. The vector field value has to be returned as a list, which is why we need both toggle and Toggle. There’s a
good reason for this; if you’re curious and have way too much free time on your hands, ?lsoda gives the
explanation. You’ve been warned.

The “basic” ODE solver in R is rk4, which implements the 4th-order Runge Kutta method with a fixed time step.
The format is

out=rk4(x0,times,func,parms)

Here times is a vector of the times at which you want solution values, x0 is the value of the state vector at the
initial time (i.e. times[1]), func func is the function specifying the model (such as Toggle), and parms is the
vector of parameter values that will be passed to func.

Here is an example using our Toggle function:

x0=c(.2,.1); times=seq(0,50,by=0.2); parms=c(3,2,2);

out=rk4(x0,times,Toggle,parms)

matplot(out[,1],out[,2:3],type="l",ylim=c(0,3),xlab="time t",ylab="u,v");

Exercise 9.3 Write a script toggle.R with the commands above, and run them to see some solution trajectories as
a function of time. Which plotted curve is u, and which is v? How do you know? Look at the matrix out to see
how it is set up: the first column is a list of times, and the other columns are the computed (approximate) values
of the state variables at each time.
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The state trajectories both seem to be approaching constants. A second way of looking at the trajectories
(Exercise: do this yourself right now) is:

plot(out[,2],out[,3],type="l",xlab="u",ylab="v")

This kind of plot is called a phase portrait. It shows the path in the (u, v) phase plane taken by the trajectory, but
we lose track of the times at which the trajectory passes through each point on this path.

Exercise 9.4 Use rk4 again with initial conditions (0.2, 0.3) to produce a new output matrix out2 and plot phase
portraits of both solutions. Do this first for time interval [0, 50] and again for [0, 200].

The trajectories appear to end at the same places, indicating that they didn’t go anywhere after t = 50. We can
explain this by observing that the differential equations vanish at these endpoints. The curves where du

dt = 0

and dv
dt = 0 are called nullclines for the vector field. They intersect at equilibrium points, where both du

dt =

0 and dv
dt = 0. The solution with initial point an equilibrium is constant. Here, the equilibrium points are

(asymptotically) stable, meaning that trajectories close to the equilibria approach them as t increases.

Nullclines for a general vector field can be plotted using the function nullclines in DMBpplane.R. The syntax
is the same as phasearrows, for example:

nullclines(fun=toggle,xlim=c(0,3),ylim=c(0,3),resol=250,parms=c(3,2,2))

It is a good idea to use a large value of resol so that the nullclines are found accurately.

Exercise 9.5 Without erasing the nullclines, add to that plot (using points) the two solution trajectories with
different initial conditions that you have computed (out and out2 from previous exercises). You should see that
each trajectory converges to an equilibrium point where the nullclines intersect.

Exercise 9.6 There is a third equilibrium point where the two nullclines intersect, in addition to the two at the
ends of the trajectories that you have computed. Experiment with different initial conditions, to see if you can
find any trajectories that converge onto this third equilibrium (Hint: what happens in this model if u(0) = v(0)
for these parameter values?)

Exercise 9.7 Change the value of α from 3 to 1.5. How does the phase portrait change? Plot the nullclines to
help answer this question.

9.1 Always use lsoda!

The “industrial strength” solver in R is lsoda. This is a front end to a general-purpose differential equation solver
(called, oddly enough, lsoda) that was developed at Lawrence Livermore National Laboratory. The full calling
format for lsoda in the deSolve package is

lsoda(y, times, func, parms, rtol = 1e-6, atol = 1e-6,

jacfunc = NULL, jactype = "fullint", verbose = FALSE,

tcrit = NULL, hmin = 0, hmax = NULL, hini = 0, ynames = TRUE,

maxordn = 12, maxords = 5, bandup = NULL, banddown = NULL,

maxsteps = 5000, dllname = NULL, initfunc = dllname,

initpar = parms, rpar = NULL, ipar = NULL, nout = 0,

outnames = NULL, forcings = NULL, initforc = NULL,

fcontrol = NULL, events = NULL, lags = NULL,...)

Don’t panic. Sensible defaults are provided for everything but the arguments required by rk4, so lsoda can be
called just like rk4:
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out=lsoda(x0,times,Toggle,parms=c(3,2,2))

matplot(out[,1],out[,2:3],type="l",ylim=c(0,3));

Usually you can get away with doing this, and here we always will. The options rtol and atol can be used to
control the accuracy that the numerical integration tries to achieve, by using smaller time steps. lsoda automati-
cally adjusts step sizes to achieve the desired error tolerance (based on error estimates that it calculates), whereas
rk4 always goes directly from one value in times to the next.

One key reason for using lsoda rather than rk4 is stiffness. Differential equations are called stiff if they have
some variables or combinations of variables changing much faster than others. Stiff systems are harder to solve
than non-stiff systems and require special techniques. The lsoda solver monitors the system that it is solving for
signs of stiffness, and automatically switches to a stiff-system solver when necessary. Many biological models
are at least mildly stiff, so for real work you should always use lsoda rather than rk4. The only time to try rk4 is
when lsoda fails on your problem, returning an error message rather than a solution matrix. You may get a clue
as to the reason by trying rk4 with a very small time step and seeing how the solutions behave, e.g., does a state
variable blow up to infinity in finite time?

Exercise 9.8 Write a script using lsoda to solve the Lotka-Volterra model

dx1/dt = x1(r1 − x1 − ax2)
dx2/dt = x2(r2 − x2 − bx1)

in which the parameters r1, r2, a, b are all passed as parameters via the argument parms. Generate solutions for
the same parameter values with rk4 and lsoda, and compare the results.

Exercise 9.9 Write a script using lsoda to solve the constant population size SIR model with births,

dS/dt = µN − βSI/N − µS
dI/dt = βSI/N − (γ + µ)I

dR/dt = γI − µR

Set parameter values as µ = 1/70, γ = 0.75 with initial conditions S(0) = 999900, I(0) = 100, and R(0) = 0
(such that N = 106). Obtain numerical solutions, with time values t such that t ∈ [0, 25], while varying the value
of β: β = 0.50, β = 2.50.
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