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ABSTRACT

Limit Cycles and Dynamics of Rumor Models

by

Geophrey Odero

This thesis discusses limit cycles and behavior of rumor models. The first part presents

the deterministic Daley-Kendall model (DK) with arrivals and departures and com-

parison of the Susceptibles, Infectives and Removed (SIR) model and the DK model.

The second result is a part of the qualitative analysis and the general behavior of ex-

tension of the Daley-Kendall model. Here we discuss how the halting rate of spreaders

causes the model to change from a stable equilibrium or a stable limit cycle. In the

third part we carry out model validation and use both synthetic data and real data

sets and fit them to the numerical solutions of the extended Daley-Kendall model.

Finally, we find the parameter estimates and standard errors. In this way we shall

be able to decide whether the numerical solutions quantifying the realtionships be-

tween the variables obatined from the qualitative analysis can be accepted as the

best description of the data. We discuss sensitivity analysis results and traditional

sensitivity functions.
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1 INTRODUCTION

Different mathematical models for dissemination of information or rumor have

been studied in the past. One such model was introduced by Daley and Kendall

[4] commonly referred to as the DK model. In this model it is assumed that the

population is closed and homogenously mixing. The individuals are subdivided into

three categories or classes: naives are those are individuals who are not aware of

the rumor, spreaders are these are individuals who are actively involved in spreading

the rumor, and stiflers are those individuals who know the rumor but have stopped

spreading it. It is assumed that the rumor is spread through the population by direct

contact between spreaders and naives. Whenever a spreader interacts with a naive, a

naive becomes a spreader. When a spreader contacts a stifler, the spreader turns into

a stifler and when a spreader meets another spreader, the initiating spreader becomes

a stifler. Another fundamental assumption is that a person aware of the rumor will

continue telling it until such a time when he or she decides that it is no longer worthy

to be called “news” [4].

Each of the classes of individuals can be represented using three compartments as

shown in Figure 1 where U represents the class of naives, V the class of spreaders and

W the class of stiflers. Figure 1 shows individuals in the U compartment interacting

with the naive individuals; the individuals in the V compartment who are spreaders

interacting with the individuals who are stiflers; W . The parameter β is the contact

rate, µ is the arrival/departure rate and γ is the halting rate. The spread of a

rumor in a closed population resembles the spread of an epidemic like in the SIR

model proposed by Kermack and McKendrick [8]. The spreaders in the DK model

8



U V W
µN

µV µWµU

βUV

N
γV (V + W )

N

Figure 1: Compartment Model for the Naives, Spreaders and Stiflers

correspond to the infectives in the SIR model. The system of nonlinear ordinary

differential equations describing the both the SIR model (equations (1)–(3)) and the

DK model (equations (4)–(6)) are given below.

dS

dt
= µN − βSI

N
− µS (1)

dI

dt
=
βSI

N
− γI − µI (2)

dR

dt
= γI − µR (3)
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dU

dt
= µN − βUV

N
− µU (4)

dV

dt
=
βUV

N
− γV (V +W )

N
− µV (5)

dW

dt
=
γV (V +W )

N
− µW (6)

One of the main similarities between the two models represented by equations (1)–(3)

and (4)–(6), respectively, is in the creation of new cases. For example, compare βSI
N

in equation (2) with βUV
N

in equation (5). On the other hand, the main difference is

in the halting rate, that is γI in equation (2) versus γV (V+W )
N

in equation (5).

The Jacobian matrix corresponding to system equations (4)–(6) is given by

J =

−βVN − µ −βU
N

0
βV
N

βU
N
− γ(V+W )

N
− γV

N
− µ −γV

N

0 γ(V+W )
N

+ γV
N

γV
N
− µ

 .
The Jacobian matrix evaluated at (N, 0, 0) reduces to

J =

−µ −β 0
0 β − µ 0
0 0 −µ

 .
If β < µ then this implies that all eigenvalues have negative real parts. The basic

reproduction number for the DK model R0 = β
µ
, ([3]) implying that when R0 < 1,

then the equilibrium point (N, 0, 0) is stable.

1.1 Basic Reproductive Number for the SIR Model versus the DK Model

The Basic Reproductive Number of the SIR model is RSIR
0 = β

γ+µ
[8], while for the

DK model the basic reproductive number is RDK
0 = β

µ
. Therefore we can see that

RSIR
0 < RDK

0 .
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The numerical solutions for the SIR model versus the DK model are shown in Fig-

ure 2 below. The SIR model represented by Figure 2 (a) shows that the infec-

tive has suffered extinction and all individuals in the population are susceptible

hence the disease free equilibrium is stable. The DK model represented by Fig-

ure 2 (b) shows that the naives, spreaders, and stiflers are in coexistence hence

the endemic equilibrium is stable. The same parameter values and initial condi-

tions were employed while computing numerical solutions of equations (1)–(3) and

(4)–(6), respectively. Figure 2 (a) shows that the disease free equilibrium is sta-

ble in the SIR model while Figure 2 (b) shows that the endemic equilibrium is

stable in the DK model. The parameter values are β = 1.5, µ = 1.0, γ = 1.0.

The initial conditions N(0) = 100, S(0) = 0.5 · N, I(0) = 0.5 · N,R(0) = 0 and

U(0) = 0.5 ·N, V (0) = 0.5 ·N,W (0) = 0.

(a) (b)

Figure 2: The SIR Model versus the DK Model plots
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2 EXTENSIONS TO THE DALEY-KENDALL MODEL

In order to understand the dynamics of the Daley-Kendall model [4], we consider

two models represented by systems of equations: one with a linear halting rate αv and

the other with a non-linear halting rate bv
1+v

for spreaders. We look at the effect the

halting rate has in the qualitative behavior of the models. The qualitative behavior

of these models will provide a basis for the understanding of the DK model and its

extensions; in particular it will establish a dynamic transition:from stable equilibrium

to stable limit cycle.

2.1 Halting Rate of Spreaders Leading to Stable Equilibrium

Consider the non-linear model given by the system of differential equations (7)–(8)

du

dt
= au(1− u

K
)− βuv (7)

dv

dt
= βuv − αv (8)

where u and v denote the naive individuals and spreaders respectively, while a, β, K,

and α are the intrinsic factor, contact rate, carrying capacity and arrival/departure

rate, respectively. We can rule out the existence of limit cycles for this model by

using Dulac’s criterion [9].

12



Let the Dulac function be given by

B =
1

uv
.

By using the Dulac’s Criterion, the system represented by equations (7) and (8)

reduces to

∂

∂u

(
auK − au2

uvK
− βuv

uv

)
+

∂

∂v

(
βuv − αv

uv

)
This reduces to −a/(Kv) < 0. Given a, k > 0, by application of Dulac’s Criterion

the system does not support stable limit cycles.

We can compute the equilibrium points [7] for the model represented by the system

of equations (7)–(8) and also investigate the behavior of the model at each of the

equilibrium points [5]. This system has the following equilibrium points:(0, 0),(K, 0)

and (α
β
, a(βK−α)

β2K
).

Evaluating the Jacobian matrix of the system represented by equations (7)–(8),

at the first equilibrium point (0, 0) we obtain

J(0, 0) =

[
a 0
0 −α

]
.

For any value of α, a > 0, the determinant ∆ < 0 , implying that the equilibrium

point (0, 0) is unstable.

13



Evaluating the Jacobian matrix of the system represented by equations (7)–(8),

at the second equilibrium point (K, 0) , we obtain

J(K, 0) =

[
−a −βK
0 βK − α

]
.

For any value of α, β,K > 0, if βK < α then we have all eigenvalues with negative

real parts. Moreover, if βK < α then the determinant ∆ > 0 and trace T < 0, hence

the equilibrium point (K, 0) is stable.

Evaluating the Jacobian matrix of the system represented by equations (7)–(8) at

the third equilibrium point (α
β
, a(βK−α)

β2K
) , we obtain

J

(
α

β
,
a(βK − α)

β2K

)
=

[
a− 2aα

βK
− a(βK−α)

βK
−α

α(βK−α)
βK

0

]
.

The determinant ∆ = α2(βK−α)
βK

and trace T = a − 2aα
βK
− a(βK−α)

βK
. For any value of

α, a, β,K > 0, if βK − α > 0 and a <
(

2aα
βK

+ a(βK−α)
βK

)
then ∆ > 0 and T < 0 hence

the equilibrium point
(
α
β
, a(βK−α)

β2K

)
is stable.

14



Figure 3 shows numerical solutions illustrating the existence of stable equilibrium

for the model represented by the system of equations (7)–(8). The graphs in Figure

3 (b) are trajectories in the phase plane i.e., plots of v(t) versus u(t) common graphs

when looking at equilibria. All the trajectories converge at the stable equilibrium

point. On the other hand, Figure 3 (a) displays time solution plots, i.e., u(t) versus

t. The parameter values used are a = 2,K = 3,β = 2 and α = 1.5. The initial

conditions u(0) = 3 and v(0) = 2. The determinant; ∆ = 1.69 and trace; T = −1.

(a) (b) 

Figure 3: Time Plots and Phase Portrait for Stable Equilibrium
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2.2 Halting Rate of Spreaders Leading to Stable Limit Cycles

Consider the non-linear model given by the system of differential equations (9)–(10)

below. Let us analyze the behavior of the system after the introduction of a non-linear

halting rate bv
1+v

in equation (10).

du

dt
= au(1− u

K
)− βuv (9)

dv

dt
= βuv − bv

1 + v
. (10)

We can compute the equilibrium points for this system and also investigate the be-

havior of the model at each of the equilibrium points. This system has the following

equilibrium points: (0, 0), (K, 0),

(
C+D

2a
, b

β(C+D
2a
−1)

)
and

(
−C+D

2a
, b

β(−C+D
2a
−1)

)
where

C =
√

(−aK − βK)2 − 4abK and D = aK + βK.

Evaluating the Jacobian matrix of the system of equations (9)–(10) at the first

equilibrium point (0, 0), we obtain

J(0, 0) =

[
a 0
0 −b

]
.

This Jacobian matrix has two real eigenvalues with opposite signs. For any value of

a, b > 0, the determinant ∆ = −ab < 0 hence the equilibrium point (0, 0) is unstable

[9].
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Evaluating the Jacobian matrix of the system of equations (9)–(10) at the second

equilibrium point (K, 0), we obtain

J(K, 0) =

[
−a −βK
0 βK − α

]
.

For any value of α, a, β,K > 0, if βK < α then all eigenvalues have negative real

parts and determinant ∆ > 0 and trace T < 0 hence the equilibrium point (K, 0) is

stable.

Similarly, at the third equilibrium point

(
C+D

2a
, b

β(C+D
2a
−1)

)
we evaluate the Jaco-

bian matrix of the system of equations (9)–(10) and we obtain

J

(
C +D

2a
,

b

β
(
C+D

2a
− 1
)) =

[−aū3
K

−βū3

βv̄3
βv̄3

(1+v̄3)2

]
,

where

[
ū3

v̄3

]
=

[
C+D

2a
b

β(C+D
2a
−1)

]
.

The determinant ∆ = β2ū3v̄3− abū3v̄3
K(1+v̄3)2

and trace T = βv̄3
(1+v̄3)2

− aū3
K
. For any value

of α, a, β,K > 0, if abū3v̄3
K(1+v̄3)2

< β2ū3v̄3 and aū3
K

> βv̄3
(1+v̄3)2

then ∆ > 0 and T < 0,

hence this equilibrium point

[
C+D

2a
b

β(C+D
2a
−1)

]
is stable. However, we must comment on

the fact that

[
ū3

v̄3

]
lies on the fourth quadrant of the u − v plane, and therefore has

no applicable meaning. Because v̄3 < 0, we are only interested in the positive value

of the spreaders.

Let us now consider the fourth equilibrium point

(
−C+D

2a
, b

β(−C+D
2a
−1)

)
. This is

the only equilibrium point in the first quadrant denoted as[
ū4

v̄4

]
=

[
−C+D

2a
b

β(−C+D
2a
−1)

]
.
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We now need to prove by Poincare’ Bendixson theorem [9] that at the equilibrium

point

(
−C+D

2a
, b

β(−C+D
2a
−1)

)
, the system undergoes a stable limit cycle.

Poincare’ -Bendixson theorem is explained in [9] and here we quote this theorem:

“Suppose that

• R is a closed, bounded subset of a plane;

• dx
dt

= f(x) is a continuously differentiable vector field of an open set containing

R;

• R does not contain any fixed points and;

• There exists a trajectory P that is ”confined” in R, in the sense that it starts

in R and stays in R for all future time. Therefore, either P is a closed orbit

as t → ∞ or it spirals towards a closed orbit [2]. In either case, R contains a

closed orbit.”

Note that Poincare-Bendixson Theorem [9] is used to establish the existence of closed

orbits in particular systems. When applying the Poincare-Bendixson Theorem [9], it

is easy to satisfy the first three conditions:

• R is a closed,bounded subset of a plane;

• dx
dt

= f(x) is a continuously differentiable vector field of an open set containing

R;

• R does not contain any fixed points.

18



What we need to do is to show that all solutions are trapped in a bounded region

away from the equilibrium point

(
−C+D

2a
, b

β(−C+D
2a
−1)

)
by showing that it is repelling.

We should note that a vector field is an assignment of a vector to each point in

a subset of Euclidean space and can be visualized as a collection of arrows with a

given magnitude and direction each attached to a point in the plane. The nullclines

are sets of points in the direction field such that the derivative is equal to zero [7].

For this model, equations (9)–(10), we first need to start by considering the di-

rection of the vector fields (note that they are made by assigning a three dimensional

vector to every point in region); then we construct the trapping region. Note that in

plotting Figure 4 below, by definition, the arrows are vertical on the du
dt

= 0 nullcline,

and horizontal on the dv
dt

= 0 nullcline. The direction of flow is determined by the

signs of du
dt

and dv
dt

. Thus, we construct the trapping region.

Figure 4 below is a plot of the nullclines and the trapping region in the first

quadrant denoted by dotted lines and vector field direction. Every trajectory starts

within the trapping region and moves to its interior and remains there all the time

as the system evolves.

19



Figure 4 has regions R1, R2, R3 and R4. We shall look at the direction of flow

of vector field in each of the four regions and finally concentrate on the trapping

region R1 corresponding to R (a closed, bounded subset of a plane). Figure 4 shows

the trapping region taking into consideration the boundaries made by the respective

nullclines corresponding to the naives and spreaders in the model (9)–(10).

unstable 

Figure 4: Trapping Region
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Now consider the region bounded by the dashed lines shown in figure 4 above. We

claim that it is a trapping region R. To show this, we have to show that all vectors

move away from the boundary point into the box. Consider the Rumor model given

by the system of differential equations (9) and (10). We need to prove that a closed

orbit exists if a, b, β and K satisfy an appropriate condition other than a, b, β,K > 0.

We now have to find a condition under which the equilibrium point is a repeller, i.e.,

an unstable node or spiral.

Equilibria are computed by setting the right-side of equations (9)–(10) to zero and

and by solving for (u, v):

u
[
a(1− u

K
)− βv

]
= 0 (11)

v

[
βu− b

1 + v

]
= 0 (12)

By equations (11)–(12), we see that the trivial equilibrium given by

[
ū1

v̄1

]
=

[
0
0

]
is a

solution.

Excluding the trivial equilibrium point (0, 0), the equilibrium equations reduce to

a
(

1− ū4

K

)
− βv̄4 = 0 (13)

βū4 −
b

1 + v̄4

= 0. (14)
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Expressing both equations (13) and (14) in terms of v̄4, gives

v̄4 =
a(K − ū4)

βK
(15)

v̄4 =
b

βū4

− 1. (16)

where v̄4 = b

β(−C+D
2a
−1)

.

Evaluating the Jacobian matrix at the interior equilibrium

(
−C+D

2a
, b

β(−C+D
2a
−1)

)
i.e. ū4 > 0 and v̄4 > 0, the Jacobian matrix reduces to

J

(
−C +D

2a
,

b

β
(−C+D

2a
− 1
)) =

[
−aū4

K
−βū4

βv̄4
βv̄4

(1+v̄4)2

]
.

In order to determine an expression/equation for the trace of J we need to simplify the

Jacobian matrix by expressing it in terms of ū4, where ū4 = −C+D
2a

. Using equations

(13) and (14) reduces the Jacobian matrix now to

J =

[
−aū4

K
−βū4

a(K−ū4)
K

βū4(b−βū4)
b

]
,

and therefore its trace is given by

T =
ū4

Kb

[
Kβb−Kβ2ū4 − ab

]
. (17)

We should note that the equilibrium point

(
−C+D

2a
, b

β(−C+D
2a
−1)

)
is unstable for

T > 0 and stable for T < 0 [9], whenever the determinant is positive. We need to

find an expression that satisfies the condition for the dividing line T = 0. Using the

expression for the trace (17), we see a condition that the trace T equals zero if and

only if ū4 = βKb−ab
β2K

.
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From equations (13) and (14) we have that v̄4 = aK−aū4
βK

or v̄4 = b
βū4
− 1, implying

that

aK − aū4

βK
=

b

βū4

− 1 (18)

Substituting ū4 = −C+D
2a

into equation (18), gives the following expression:

abβ3K3 − ab2β2K2 + 2a2b2βK − a2bβ2K − a3b2 − bβ3K3 + bβ4K3 − abβ3K2 = 0

(19)

Solving for the parameter b in terms of other parameters we find that

bc = −β
2K2(a2 + a(β − βk)− (β − 1)βK)

a(a− βK)2
(20)

Using equation (20), we show that the equilibrium point is unstable for T > 0, if b > bc

and stable for T < 0 if b < bc, respectively. The dividing line T = 0 therefore occurs

if and only if equation (20) is satisfied. An important result we have seen here is that

by using Poincare’-Bendixson theorem, we were able to identify a trapping region

and proved that the equilibrium point

(
−C+D

2a
, b

β(−C+D
2a
−1)

)
is actually a repeller, and

thus the trapping region can sustain a stable limit cycle [9].
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To have a clear picture of the qualitative behavior of the model around the point

bc above, we can reduce bc into a function of a by assigning values to the free variables

β and K. For parameter values β = 1 and K = 5 the equation for bc reduces to

bc =
−25(a2 − 4a)

a(a− 5)2
. (21)

and this defines a curve in (a, b) space, as shown by Figure 5. It shows the parameter

space , i.e., (a, b) and the curve defined by equation (20). Two regions are identified

in the parameter space, one that supports stable equilibrium, and another one with

stable limit cycle.

b

T > 0

T < 0

T = 0

!"#$%&'%()("'*+*%&'

!"#$%&'&,-(%($.(-)'

Figure 5: Trace Curve in the (a, b) Parameter Space
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For parameters in the region corresponding to T > 0 in Figure 5, we should note

that there is a guarantee that the model represented by the system of equations (9)–

(10) has a stable limit cycle [9] and the numerical solutions for both the systems with

linear halting rate in equation (9) and non-linear halting rate in equation (10) are

considered. The time solutions and phase portraits for the system are then displayed.

The stable equilibrium is displayed by Figures 6 (a)–6 (b) while the initial conditions

and parameter values are u(0) = 5, v(0) = 2 and a = 1, b = 3, β = 2, K = 2

respectively. The stable limit cycle is displayed by Figures 6 (c)–6 (d) while the

initial conditions and parameter values used are u(0) = 5 and v(0) = 2 a = 1, b =

2, β = 1, K = 3 respectively.

(c) (d) 

Figure 6: Time Plots and Phase Portrait for a Stable Equilibrium in Panels (a)− (b),

and Stable Limit Cycle in Panels (c)− (d)
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3 MODEL VALIDATION

In this section, we shall discuss how to estimate the parameters of the model

given a data set by using ordinary least squares (OLS) [3]. We shall also perform

uncertainty quantification and look at a statistical observation process that describes

a data set. One of the main objectives of model validation is to compare estimates

from a mathematical model of a system to the measured behavior of the system. In

this section, we shall also use Ordinary Least Squares (OLS) method to validate our

model represented by equations (9)–(10).

Consider a time-evolving process described by the mathematical model

dx

dt
= f(x(t, θ), θ).

The function f is continuous and is defined by the right side of equations (9)–(10).

We consider the model output to be a re-scaling of the number of spreaders by a

scalar α. Other model parameters we shall consider in our analysis are a, b, β and K.

For example, in the extension model of the DK model , x(t, θ) = (u(t, θ), v(t, θ)), and

θ = (a, b, β,K). Then, the statistical model for the observation process for i = 1, ....n.

is given by

Yi = αv(ti, θ0) + εi.

where errors denoted by εi are assumed to be random variables satisfying the following

assumptions [1]:

• the errors εi have a mean of zero, E = [εi] = 0

• the errors εi have finite common variance , var(εi) = σ2
0 <∞;
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• the errors εi are independent identically distributed (i.e cov(εi, εj) = 0 whenever

i 6= j.

3.1 Forward Solution and Synthetic Data

A realization of the observation process can be computed using independent draws

from a normal distribution [3]. Suppose both θ0 and σ2
0 are known. Then, a realization

yi is given by

yi = αv(ti, θ0) + εi.

where αv(ti, θ0) is the numerical solution to the deterministic model given by equa-

tions (9)–(10) (for spreaders) evaluated at the true value of the parameter, θ0, and

the εi is the error, εi ∼ N (0, σ2
0), for i = 1, ...., n.
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To explore the parameter estimation, we can use simulated data. These data are

generated by setting values for θ0 and σ0. For example, let a = 1, b = 2, β = 1,

K = 3 and σ0 = 0.1203. In this way, we ensure that we are fitting a correct model to

the data and a correct method is being used. Figure 7 displays numerical solutions

αv(t, θ0) with initial conditions u(0) = 5, v(0) = 2 .

Figure 7: True Solution of Equations (9)–(10) and Synthetic Data versus Time
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3.2 Ordinary Least Squares Estimator

The ordinary least squares method (OLS) is used to compute estimations of

parameters and to fit data [1]. In this subsection we shall discuss how to use (OLS)

to estimate parameters of the DK from datasets.

The estimator ΘOLS minimizes

n∑
i=1

[Yi − αv(ti, θ)]
2.

In the limit as n→∞, ΘOLS is approximately distributed according to a multivariate

normal distribution, i.e.

ΘOLS ∼ Np(θ0,Σ0),

where Σ0 = σ2
0[nΩ0]−1 ∈ Rp×p and Ω0 = limn→∞

1
n
χ(θ0)Tχ(θ0) [1].

The n × p matrix χ(θ0) is known as the sensitivity matrix of the system and is

defined as (see [3] for additional details)

χij(θ0) =
∂

∂θj
αv(ti, θ0)|θ=θ0 .

Numerical values of χ(θ) are readily calculated, for particular θ,by solving both equa-

tions below (forward sensitivity equations) simultaneously from t = t0 to t = tn:

dx

dt
= f(t, x(t, θ), θ) (22)

d

dt

∂x

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂θ
(23)
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3.3 Uncertainty Quantification

Note that that θ̂OLS is a realization of the estimator [3] ΘOLS, and is calculated

using a realization {yi}ni=1 of the observation process {Yi}ni=1. An approximation for

the sampling distribution of the estimator is given by

ΘOLS ∼ Np(θ0,Σ0) ≈ Np(θ̂OLS, Σ̂OLS).

The covariance matrix Σ0 is approximated by

Σ̂OLS = σ̂2
OLS[χ(θ̂OLS)Tχ(θ̂OLS)]−1.

where

σ̂2
OLS =

1

n− p

n∑
i=1

[yi − αv
(
ti, θ̂OLS

)
]2

Standard errors can be used to quantify the uncertainty in the estimation

SEk(θ̂OLS) =

√
(Σ̂OLS)kk (24)

for k = 1, ...p. To quantify uncertainty in the estimation we need to calculate Σ̂OLS.

For more details see [1] and references therein.
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3.4 Real Data Sets

Real data sets can be found from google trends (http://www.google-trend.com).

Google trends is a free public service that provides charts and data of how often

words, phrases, personalities or topics providing temporal patterns about searches in

which an individual can find different data sets. To get a real data set from using

google trends, a person has to sign in to a google account and type in a query. This

opens up a chart with a series frequency over time or in a particular region. In order

to get the the right data set one has to be specific in the search term to use. For the

data to be saved for model analysis purposes then it is to be downloaded as a csv file.

This data set can then be copied/pasted and saved in a specific file for the purposes

of analysis.

Let us now consider different sample of data sets from google trends. The data

sets we shall compare include the following:

• Summer olympics

• Winter olympics

• U.S.A. presidential elections and

• U.S.A. elections (any other election not necessarily the presidential election,

used to represent an expected period slightly different from four years).

We shall plot a display for all the above sample data sets from google trends and also

the respective zoomed-in image for clarity as shown in Figures 8–11.
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Figure 8 shows a display of the summer Olympics data sets from google trends.

Panel (a) shows the actual plot while panel (b) the zoomed image for better resolution.

(a) (b)

Figure 8: Plot of the Summer Olympics Data Sets
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Figure 9 is a display of the winter Olympics data sets from google trends. Panel

(a) shows the actual plot while panel (b) the zoomed image for better resolution.

(b)(a)

Figure 9: Plot of the Winter Olympics Data Sets
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Figure 10 is a display of the U.S.A. presidential elections data sets from google

trends. Panel (a) shows the actual plot while panel (b) the zoomed image for better

resolution.

(b)(a)

Figure 10: Plot of the U.S.A. Presidential Elections Data Sets

34



Figure 11 is a display of the U.S.A. elections data sets from google trends. Panel

(a) shows the actual plot while panel (b) the zoomed image for better resolution.

(a) (b)

Figure 11: Plot of the U.S.A. Elections Data Sets

The time points in the data sets displayed by Figures 8–11 were measured in weeks.

We notice in the general trend that there are times when the measurements remain

at a low level, i.e., between 2 and 5, while at other times they reach a maximum

value ranging between 60 and 90. The scale in the y-axis corresponding to frequency

is in percentages. In general, these data sets were chosen because they peak after

every four years. Note that we need data sets that peak every four years because the

numerical solutions of our model has a period of four years.
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3.5 Parameter Estimates and Standard Errors

Parameter estimation helps to accurately describe the behavior of the system of

equations (9)–(10). We shall fit several data sets from google trends observed to be

of approximately a period of four years, similar to the period of numerical solutions

of the model represented by the equations (9)–(10). The following are some of the

optimization algorithms we shall use to estimate the parameters and compare the

respective standard errors.

• Fminsearch: It is the name of the MATLAB built-in function that uses the

Nelder-Mead simplex algorithm and finds the minimum of a scalar function

of several variables, starting at an initial estimate [6]. It uses the simplex

search method; a direct search method that does not use numerical or analytic

gradients. It has some disadvantages. For example, it cannot often handle

discontinuity, particularly if it does not occur near the solution. It may only

give local solutions and it only minimizes over the real numbers, that is, the

input must only consist of real numbers and the output function must only

return real numbers [6]. When the input has complex variables, they must be

split into real and imaginary parts.

• Global optimization: As the name suggests, it finds globally the best solution of

nonlinear models, i.e, it tries to find global solutions of a constrained optimiza-

tion model. In this manner, it uses a global optimization tool box by generating

a number of initial/starting points [6]. One such example we shall use here is

pattern search.
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Now we would like to display the best fit plots of numerical solutions and samples

of real data sets from google trends using different optimization algorithms that we

have discussed above. This, together with zoomed-in image will help us to determine

how good the best fit plots are. Figure 12 shows best fit solution for the summer

Olympics data set using the Nelder-Mead algorithm (fminsearch). Figure 12 (a)

shows the best fit plot of the data set while Figure 12 (b) is the zoomed-in image of

Figure 12 (a). The fixed parameter values are β = 1 and K = 5. Initial conditions

u(0) = 5, v(0) = 2.

(a) (b)

Figure 12: The best Fit Solution for the Summer Olympics Data Sets using the

Nelder-Mead optimization algorithm (fminsearch)

37



Figure 13 shows the best fit solution for the summer Olympics data sets using

a pattern search optimization. Figure 13 (a) shows the best fit plot using pattern

search algorithm for the data set while Figure 13 (b) is the zoomed-in image of

Figure 13 (a). The fixed parameter values are β = 1 and K = 5. Initial conditions

U(0) = 5, V (0) = 2.

(a) (b)

Figure 13: The best Fit Solution for the Summer Olympics Data Sets using a pattern

search optimization algorithm
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Figure 14 shows the best fit solution for the summer Olympics data sets using a

global search optimization algorithm. Figure 14 (a) shows the best fit plot of the data

set while Figure 14 (b) is the zoomed-in image of Figure 14 (a). The fixed parameter

values are β = 1 and K = 5. Initial conditions u(0) = 5, v(0) = 2.

(a) (b)

Figure 14: The best Fit Solution for the Summer Olympics Data Sets using a global

search optimization algorithm
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The results of the estimates and corresponding standard errors using different

optimization algorithms for the summer Olympics data sets are compared and sum-

marized by Table 1.

Table 1: Parameter estimates and standard errors obtained by three optimization

algorithms: Nelder-Mead1; pattern search2; global search3

Parameter Estimate1 S.E1 Estimate2 S.E2 Estimate3 S.E3

a 3.662 35.059 3.795 3.785 3.347 4.024
b 4.182 68.610 2.501 15.846 4.736 2.973
α 1.720 12.563 1.482 1.257 1.341 1.653

Notice that in general, in Table 1, the Nelder-Mead algorithm (fminsearch) has

the largest standard error associated with the estimate of all parameter values than

the pattern search optimization algorithm and global search methods. The pattern

search optimization algorithm resulted in a higher standard error for the estimate

of parameter b than when the global search optimization method was used. The

pattern search method also resulted in the lowest value of standard error for parameter

α compared to the Nelder-Mead algorithm (fminsearch) and global search method.

The best fit solution tended to concentrate on the lower values of the data set while

maintaing the same period.
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Figure 15 shows the best fit solution for the winter Olympics data sets using the

Nelder-Mead (fminsearch) optimization algorithm. Figure 15 (a) shows the best fit

plot of the data set while 15 (b) is the zoomed-in image of Figure 15 (a). The fixed

parameter values are β = 1 and K = 5. Initial conditions u(0) = 5, v(0) = 2.

(a) (b)

Figure 15: The best Fit Solution for the winter Olympics Data Sets using the Nelder-

Mead optimization algorithm (fminsearch)
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Figure 16 shows the best fit solution for the winter Olympics data sets using a

pattern search optimization algorithm. Figure 16 (a) shows the best fit plot of the

data set while 16 (b) is the zoomed-in image of Figure 16 (a). The fixed parameter

values are β = 1 and K = 5. Initial conditions u(0) = 5, v(0) = 2.

(a) (b)

Figure 16: The best Fit Solution for the Winter Olympics Data Sets using a pattern

search optimization algorithm
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Figure 17 shows the best fit solution for the winter Olympics data sets using a

global search optimization algorithm. Figure 17 (a) shows the best fit plot of the data

set while 17 (b) is the zoomed-in image of Figure 17 (a). The fixed parameter values

are β = 1 and K = 5. Initial conditions u(0) = 5, v(0) = 2.

(b)(a)

Figure 17: The best Fit Solution for the Winter Olympics Data Sets using a global

search optimization algorithm
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The results of the estimates and corresponding standard errors using different

optimization algorithms for the winter Olympics data sets are compared and summa-

rized by Table 2.

Table 2: Parameter estimates and standard errors displayed obtained by three opti-

mization algorithms: Nelder-Mead1; pattern search2; global search3

Parameter Estimate1 S.E1 Estimate2 S.E2 Estimate3 S.E3

a 3.721 32.415 3.923 3.646 3.916 3.991
b 4.621 59.314 2.681 12.457 4.329 3.014
α 1.914 8.631 1.763 1.424 1.741 1.823

We can notice in Table 2 that the largest standard errors for all the parameter

estimates resulted with the Nelder-Mead algorithm (fminsearch). Also, the global

search optimization method resulted in larger standard errors than pattern search

optimization algorithm. We should note that larger standard errors imply larger

uncertainties in the estimates and this trend is well shown by how the best fit plot

solution appears in Figures 15–17.
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Figure 18 shows best fit solution for the U.S.A. presidential elections data sets

using the Nelder-Mead (fminsearch) optimization algorithm. Figure 18 (a) shows the

best fit plot of the data set while 18 (b) is the zoomed-in image of Figure 18 (a). The

fixed parameter values are β = 1 and K = 5. Initial conditions u(0) = 5, v(0) = 2.

(b)(a)

Figure 18: The best Fit solution for the U.S.A Presidential Elections Data Sets using

the Nelder-Mead optimization algorithm (fminsearch)
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Figure 19 shows the best fit solution for the U.S.A. presidential elections data

sets using a pattern search optimization algorithm. Figure 19 (a) shows the best fit

plot of the data set while 19 (b) is the zoomed-in image of Figure 19 (a). The fixed

parameter values are β = 1 and K = 5. Initial conditions u(0) = 5, v(0) = 2.

(a) (b)

Figure 19: The best Fit Solution for the U.S.A presidential Elections Data Sets using

a pattern search optimization algorithm
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Figure 20 shows the best fit solution for the U.S.A. presidential elections data

sets using a global search optimization algorithm. Figure 20 (a) shows the best fit

plot of the data set while 20 (b) is the zoomed-in image of Figure 20 (a). The fixed

parameter values are β = 1 and K = 5. Initial conditions u(0) = 5, v(0) = 2.

(a) (b)

Figure 20: The best Fit Solution for the U.S.A. presidential Elections Data Sets using

a global search optimization algorithm
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The results of the estimates and corresponding standard errors using different

optimization algorithms for the U.S.A presidential elections data sets are compared

and summarized by Table 3.

Table 3: Parameter estimates and standard errors obtained by three optimization

algorithms: Nelder-Mead1; pattern search2; global search3

Parameter Estimate1 S.E1 Estimate2 S.E2 Estimate3 S.E3

a 4.111 39.303 4.001 3.219 3.628 3.991
b 3.922 54.612 2.462 16.471 4.521 2.893
α 1.801 11.114 1.615 1.390 1.616 1.596

From Table 3 we can see that for the U.S.A. presidential elections data sets using

pattern search optimization algorithm yielded larger standard errors for all the pa-

rameter estimates than a global optimization. Similarly, the Nelder-Mead algorithm

(fminsearch) has the largest standard errors than either the pattern search or the

global search. The best fit solution tended to mimic the peak of the data set but at

lower levels of data values.
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Figure 21 below shows best fit for the U.S.A. elections data sets using the Nelder-

Mead (fminsearch) optimization algorithm. Figure 21 (a) shows the best fit plot of

the data set while 21 (b) is the zoomed-in image of Figure 21 (a). The fixed parameter

values are β = 1 and K = 5. Initial conditions u(0) = 5, v(0) = 2.

(b)(a)

Figure 21: The best Fit solution for the U.S.A Elections Data Sets using the Nelder-

Mead optimization algorithm (fminsearch)
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Figure 22 shows the best fit solution for the U.S.A. elections data sets using a

pattern search optimization algorithm. Figure 22 (a) shows the best fit plot of the

data sets while 22 (b) is the zoomed-in image of Figure 22 (a). The fixed parameter

values are β = 1 and K = 5. Initial conditions u(0) = 5, v(0) = 2.

Figure 22: The best Fit Solution for the U.S.A Elections Data Sets using a pattern

search optimization algorithm
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Figure 23 shows the best fit solution for the U.S.A. elections data sets using a

global search optimization algorithm. Figure 23 (a) shows the best fit plot of the

data set while 23 (b) is the zoomed-in image of Figure 23 (a). The fixed parameter

values are β = 1 and K = 5. Initial conditions u(0) = 5, v(0) = 2.

(b)(a)

Figure 23: The best Fit Solution for the U.S.A. Elections Data Sets using a global

search optimization algorithm

We should note that, in Figures 21–23 representing U.S.A elections data sets, the

best Fit Solution appears different from those in Figures 18–20 because the U.S.A

presidential elections data sets have a period of four years while U.S.A elections data

sets have a period slightly different from four years.
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The results of the estimates and corresponding standard errors from the

different optimization algorithms for the U.S.A elections data sets are compared and

summarized by Table 4 below.

Table 4: Parameter estimates and standard errors obtained by three optimization

algorithms: Nelder-Mead1; pattern search2; global search3

Parameter Estimate1 S.E1 Estimate2 S.E2 Estimate3 S.E3

a 3.541 31.474 3.874 3.525 3.811 4.128
b 4.071 49.730 2.596 13.792 4.267 2.793
α 1.693 10.204 1.600 1.236 1.976 1.525

In Table 4 the Nelder-Mead algorithm (fminsearch) has the largest standard errors

for the estimates of all the parameter values compared to a pattern search optimiza-

tion algorithm. The global search optimization method resulted in the the least

standard error for the estimate of the parameter α compared to the Nelder-Mead

algorithm (fminsearch) optimization algorithm. The best fit solutions tended to cap-

ture the lower levels of the data set values. We can also see that the estimates for α

had a larger uncertainty when we used a global search compared to pattern search.

The Nelder-Mead (fminsearch) method only converges for convex problems, of which

our model is not, and only guarantees decreasing values otherwise. Without convex-

ity, Nelder-Mead (fminsearch) method tends to get in “far from correct” answers;

gradient speedup is sometimes used, but requires smooth objective. Therefore, in

general we would not expect reliable results for the estimates.
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4 SENSITIVITY ANALYSIS

Sensitivity analysis is a systematic study of how sensitive numerical solutions

of the model are to any slight changes in the parameter values [1]. The sensitivities

of a system provide information on how states of the system respond to changes

in parameters. We can use sensitivities to identify time intervals where the system

is most sensitive to such changes [3]. Given that sensitivities are used to calculate

uncertainties in parameter estimates, a look at the sensitivity functions is an indicator

of time intervals at which data points have less or more information for the parameter

estimation process [4].

Traditional sensitivity functions are used in mathematical modeling to investigate

variations in the output of a model resulting from variations in the parameters and the

initial conditions. Consider the following model parameters: a is the intrinsic growth

rate, b is the halting rate, β is the contact rate, and K is the carrying capacity. If

v ≡ v(a), then the ratio ∆v
∆a

gives the average rate of change of spreaders v with

respect to a. Consider v ≡ v(t, a), so that

∂v

∂a
= lim

h→0

v(t, a+ h)− v(t, a)

h
≡ ∂v

∂a
(t, θ).

Similarly for the parameter b, consider v ≡ v(t, b), so that

∂v

∂b
= lim

h→0

v(t, b+ h)− v(t, b)

h
≡ ∂v

∂b
(t, θ).

The curves ∂v
∂a

(t, θ) and ∂v
∂b

(t, θ) are called traditional sensitivity functions and

when displayed versus time, they offer information on monotonicity of v with respect

to the parameters θ. The sensitivities are defined as ∂v
∂a

(tj, θ) and ∂v
∂b

(tj, θ). Numerical
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values of ∂v
∂a

(tj, θ) and ∂v
∂b

(tj, θ) are obtained by solving sensitivity equations (25)–(26)

dx

dt
= f(t, x(t, θ), θ) (25)

d

dt

∂x

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂θ
(26)

Note that θ denotes the parameter values in the system of equations (13) and (14).

For the model defined by equations (9) and (10) we have that

df

dx
=

[
a− 2au

K
−βv

βv βu+ b
(v+1)2

]
and

df

dθ
=

[
u− u2

K
0 −uv au2

K2

0 v
v+1

uv 0

]
So far we have considered the parameter estimation and seen the standard errors

for all the four different data sets. We also used different optimization algorithms. It

is therefore necessary to carry out sensitivity analysis. Sensitivity analysis will help

us to know the level of uncertainty in our estimations associated with this model. In

this thesis, let us consider the model given by the system of equations (9)–(10). We

had the parameters β and K fixed. So we need to determine how small changes in

a and b affects the behavior of the model. In Figures 24(a)–(d), each graph displays

the traditional sensitivity functions of v. We can see that as time increases it seems

that v is more sensitive to b than to a and its always positive. Also we note that

the curve representing the parameter b has a larger amplitude compared to the curve

representing the parameter a, implying that the function v is more sensitive to b than

it s to a.
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By looking at the sensitivity function curves, we are see how the different param-

eters behave and this will provide information that is vital for the model. Figure

24 (a), 24 (b), 24 (c) and 24 (d) displays traditional sensitivity functions using the

parameter estimates associated with the summer Olympics, the winter Olympics, the

U.S.A. elections and the U.S.A. presidential elections data sets respectively. The

green curves correspond to parameter a while the blue curves correspond to param-

eter b. The initial conditions of the model were u0 = 5 and v0 = 2. The figures (a)

is for the summer Olympics data set, (b) is for the winter Olympics data set, (c) is

U.S.A. elections data set and (d) is for presidential elections data set. We should note

the following in the behavior of the function v with respect to the parameter values

of a and b:

• ∂v
∂b

> 0 implies that, between the years 2004 and 2008, v is a an increasing

function of b.

• ∂v
∂b
< 0 implies that, between the years 2008 and 2010, v is a decreasing function

of b.

• ∂v
∂a

> 0 implies that, between the years 2012 and 2014, v is a an increasing

function of a.

• ∂v
∂a
< 0 implies that, between the years 2010 and 2012, v is a decreasing function

of a.
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Notice that extreme positivity and extreme negativity are observed in the same

intervals listed above for the parameters b and a respectively.

(a) (b)

(c) (d)

Figure 24: Sensitivity curves

From the sensitivity curves shown by Figures 24 (a)–(d), there is evidence of huge

sensitivities every four years. This is mainly because it is after every four years that

either the Olympics data sets or the Elections data sets discussed in this thesis are

held. Therefore the “feast” behavior of the data is manifested every four years while

the “famine” behavior of the data manifests itself in the other years when neither

Olympics nor Elections take place.
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5 CONCLUDING REMARKS

In this thesis we have discussed the rumor model developed by Daley-Kendall [4].

The results of this thesis have shown it is possible to move from a stable equilibrium

to a stable limit cycle by introduction of a factor like the halting rate used in the DK

model. In comparing the SIR [2] model and the DK model, it must be noted that

we only assumed that a naive person requires only one spreader in order to become

a spreader. In the future, one may consider a possibility of a naive person requiring

more than one spreader in order to be converted into a spreader.

Another important result in this thesis is finding conditions for the existence of

stable limit cycles. Computing the equilibrium points and setting conditions on the

trace make it possible to construct the trapping region. We fixed some parameter

values i.e., β = 1 and k = 5 in order to determine the region at which the system

undergoes a stable limit cycle. This together with the trace curve enabled us to

determine the exact point within the region that is considered as a repeller. Finally,

we proved that a stable limit cycle exists.

From the analysis of the extended Daley-Kendall model [4], we learned from this

thesis that mathematical models can be used to mimic patterns observed in real data

sets. However, sometimes we still end up with large standard errors. In our case we

had to consider data sets with the same period as the numerical solutions of our model.

The results showed different estimates and with different values of uncertainties for

each method of optimization used. We should take note that our interest is to have

least uncertainties (smaller standard errors) as possible since they are better than

larger standard errors (more uncertainties). In the extension of Daley-Kendall [4].
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We used the Ordinary Least Squares method [1] and three different optimization

algorithms to fit the model to different datasets from google trends. The results

showed varied levels of uncertainties (from the values of standard errors seen in Tables

1–4).

It is therefore necessary to use the best approach that will give the best fit and

least uncertainties as possible. From the results of OLS estimations we observe that

the global search resulted in the best estimates and least uncertainties while the

Nelder-Mead search (Fminsearch) gave large uncertainties. In the rumor model we

investigated, several assumptions were made on errors used in the statistical model for

observation process. These assumptions, together with the input parameter values,

may have an effect in the final results. This may have been due to violations of some of

the statistical assumptions; for example the errors εi may not have had a mean of zero.

Whatever method or approach that one uses, the final result from this model solution

will determine if the model is a good representation of the system being investigated.

It is therefore important to carry out model validation although this may not give

the best results especially when the data is not real as in the Daley-Kendall [4] model

where it is not easy to get a data set for rumor.

In general another important result we have noted is that sensitivity analysis

by varying one or two or all parameters simultaneously is important for any model.

Sensitivity analysis can provide an understanding of the Daley-Kendall [4] model such

as how its output was affected by specific assumptions we made and parameters used.

Note that in our model, the traditional sensitivity equations denoted by ∂v
∂a

(t) and

∂v
∂b

(t) curves shows how v behaves with respect to changes in the values of parameters
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a and b. This may help in understanding the contribution of the various sources

of uncertainty to the model output, uncertainty and its performance in general. As

in this our case, we refer to the Daley-Kendall [4] model results. This will provide

information on whether the model can be reliable in solving real life problems. We

had fixed the value of β and K, so we only had to analyze how values of a and b

can change the appearance of the curves representing the behavior of the system. We

have seen that not all parameters cause a significant change in behavior of the model

13–14. Note that our estimates may not be 100 percent reliable due to the violated

assumptions and also method of estimation used (Ordinary Least Squares method).
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