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The validation of mathematical models describing contact processes, heightens the

qualitative analysis to a treasured level of understanding. The core of this dis-

sertation pertains to the estimation of parameters for contact processes; including

“Social Contagion” and communicable diseases by implementation of large-scale

genetic and evolutionary algorithms.

Mean field models for the spread of rumors are formulated based on the mixing

theory developed in Theoretical Epidemiology. In the case of homogeneously mix-

ing populations, we concluded that the choice of density-dependent rumor halting

rates determines complex dynamics ranging from stable fixed points to stable pe-

riodic solutions. The effects of heterogeneity are addressed by sampling the empir-

ical distributions of the initial growth rate and final epidemic size from stochastic

(individual-based) simulations on random networks. We confirmed that both the

initial growth and final size are sensitive to the network architecture, supporting

that social networks enhance dissemination.

Genetic Algorithms (GA) are employed to search the epidemiological parameter

space and obtain estimates subject to the optimal fit of longitudinal data.

The growth dynamics in scientific literature is conveyed by means of Social

Contagion, modeled as a contact process. We discovered subcritical bifurcations

resulting from an acceleration to adoption of the idea -as a function of the contacts



between apprentices and adopters. GA were applied to simulated longitudinal data

in order illustrate the role of community structure in literature growth. Distribu-

tions of basic reproductive numbersR0 -retrieved by the GA- were used to compare

transmission across all simulated communities.

GA were used to estimate distributions of influenza clinical reproductive num-

bers. By using strain-specific data collected by the Centers for Disease Control and

Prevention, we obtained estimates ranging from R0 = 1.25 (95% CI: 1.23-1.27) to

R0 = 1.45 (95% CI: 1.4-1.48), during seven influenza seasons in the U.S.
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Vanessa Cintrón, and my brother José Manuel Montealegre. I also extend my

cordial thanks to my aunts Bertilia and Flor, my uncles Carlos and Evangelista,

as well as to all my cousins: thank you for inspiring me every day!

I would like to thank Dr. Edwin Castro in “Universidad de Costa Rica”, for

encouraging me to pursue a career in mathematics, and his priceless tutoring in

analysis and history of mathematics.

I finished my undergraduate studies thanks to the financial support of Pell

Grants, Food Stamp Program (Puerto Rico), and “Universidad de Puerto Rico-

Cayey”. My stay in Puerto Rico was a dream that came true thanks to the
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Chapter 1

Introduction
In 2003, while driving in Santa Fe, New Mexico, a friend of mine played a catchy

tune for me; it had african-like drums with a mixture of Rap, Hip-Hop, and Reggae,

yet it was sung in Spanish. The singer was criticizing discrimination against black

people in Puerto Rican society, the lyrics were direct, clever, and most remarkably

catchy. It turned out that album had just been released and was ranking on the

top five lists of several local radio stations in Puerto Rico, despite its controversial

content. A year later, I moved to Arizona and would find tunes by the same artist

on local radio stations and being played in dancing clubs. I was witnessing the

breakthrough of a novel musical genre called Reggaeton; whose roots can be traced

back to the construction of the Panama canal, where some Jamaican workers shared

their musical talent with locals and laid out the grounds for Spanish language

Reggae. This new form of Reggae spread through the Caribbean and in Puerto

Rico it was combined with north-american Hip-Hop and Rap. Reggaeton started

as an underground movement with very limited circulation of CD’s and almost

clandestine concerts in Puerto Rico. However, by 2005 nearly 30 radio stations

around the continental United States (U.S.) had switched to spanish language Hip-

Hop and Reggaeton formats, confirming that it appeals to young people, uniformly,

from coast to coast. In addition, the Recording Industry Association of America,

reported in the first half of 2005 a 25% increase in sales of spanish language music,

mostly fueled by Reggaeton (a documentary by National Public Radio is available

in [153]). In other words, the new genre had -by 2005- gained visibility in very

1
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different markets from where it seeded; Reggaeton was not longer an underground

movement but mainstream.

Reggaeton offers an example of a broader subject pertaining to the dynamics

of fads. Many interesting questions can be posed and I now list only three of them:

What are the key mechanisms that propel the emergence of books, movies, and

albums -with limited marketing budgets- in order to gain mainstream visibility?

Why does some information circulate remarkably fast reaching many people?

Can the mathematical models developed in epidemiology be used to address the

dynamics of trends?

I started the research outlined in this dissertation inspired by two articles that

addressed the questions stated above: (i) A Theory of Fads, Fashion, Custom, and

Cultural Change as Informational Cascades by Bikhchandani et al. [28], and

(ii) Stochastic Rumours by Daley and Kendall [63].

In Chapter 2, the basic models of epidemics and rumors are introduced with

discussions concerning their similarities and differences. In Chapter 3, some gen-

eralizations to [63] are presented.

The course of this dissertation research was strengthened by a collaboration

with Luis Bettencourt, David Kaiser and my Ph.D. advisor, where Social Conta-

gion models were validated against empirical data on the spread of Feynman dia-

grams -a technique for calculation in Physics. This project fueled my preliminary

expertise in modeling rumor dissemination and flourished in my first peer-reviewed

publication [26]. Chapter 5 conveys general dynamical features of the spread of a

scientific idea within a technical community.
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As a result of my first publication [26], I was introduced to the field of parameter

estimation by using of Genetic Algorithms (GA). These methods are introduced

in Chapter 4.

Last, but not least, in Chapter 6, GA are applied to empirical data -collected

by the Centers of Disease Control and Prevention- on clinical cases of influenza,

in order to obtain estimates of reproductive numbers in the U.S. during seven

epidemiological seasons.



Chapter 2

Basic Epidemic and Rumor Models
The focus of epidemiological models is on the dynamics of “traits” transmitted

between individuals, communities, or regions (within specific temporal or spatial

scales). Traits may include (i) a communicable disease such as influenza [163] or

HIV [112]; (ii) a cultural characteristic such as a religious belief, a fad [206, 28,

24, 194], an innovation [177], or fanatic behavior [46]; (iii) an addiction such as

drug use [182] or a disorder [97]; or (iv) information spread through, e.g., rumors

[175, 63], email messages [1], weblogs [2, 3], peer-to-peer computer networks [122],

or scientific ideas [90, 26].

In fact the first efforts to quantify transmission dynamics by means of mathe-

matical models were made by public health physicians. The foundations of Theo-

retical Epidemiology were introduced by En’ko [75, 68], followed by Ross [179] and

Kermack and McKendrick [123]. As explained by Heesterbeek in an outstanding

review article [104]; “Sir Ronald Ross (1857-1932) was a medical doctor, a colonel

in the British army and a self-taugh mathematician, who conducted several cam-

paigns to contain malaria. In 1898, he discovered that malaria was transmitted

by mosquitoes and that malaria was not a consequence of “bad air” from marshes

as was the common belief until then. In 1902 Ross received the Nobel prize for

this discovery”. Ross identified the key factors in malaria transmission and calcu-

lated the number of new infections originating per month as the product of these

factors. Ross concluded that malaria could be controlled since there exists a crit-

ical density of mosquitoes below which the malaria parasite cannot be sustained.

4
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In other words, effective containment would be achieved by depressing the ratio

of mosquitoes to man below certain threshold, instead of having to eradicate all

mosquitoes in a given area [35, 104].

Formulations in Theoretical Epidemiology [4, 7, 8, 13, 35, 39, 42, 44, 45, 54, 65,

66, 99, 108, 109, 114, 147, 152, 201], typically divide the population under study

into compartments or classes that reflect the epidemiological status of individuals

(e.g. susceptible, latent, infectious, partially immune, etc.). Assumptions are made

about the nature and time rate of transfer from one compartment to another. In

addition, these formulations may include specific population characteristics such as

age, variable infectivity, and variable infectious periods [107, 201]. The division of

epidemiological classes according to such characteristics gives rise to more complex

models with so called heterogeneous mixing [66, 40, 160].

One important measure of transmission dynamics in epidemic modeling is

known as the basic reproductive number R0, defined as [107, 66, 203]: “the average

number of secondary cases produced by a typical infected (assumed infectious) in-

dividual during his/her entire life as infectious (infectious period) when introduced

in a population of susceptible”. This definition is akin to ecological principles of

invasion, in the sense that the growth of the infective class relies on the off-spring

(new infections) generated by a typical infective. In populations with high degree

of heterogeneity, an explicit computation for R0 is challenging due to the difficulty

in describing mathematically a “typical” infective. Diekmann et al. [67] proposed

a methodology to compute R0 as the spectral radius of an operator that maps gen-

erations of infected individuals into each other under the assumption of infective
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invasion limit ( the susceptible class is assumed to be at a demographic steady

state in the absence of the infectious agent ).

From the perspective of Dynamical Systems R0 is a dimensionless quantity uti-

lized to determine the nature of dynamic transitions (bifurcation points). Several

epidemic models support at least two type of equilibria: a disease-free (extinction

of infective class) and an endemic (co-existence with other classes). Most simple

models support a transcritical bifurcation as R0 crosses the threshold R0 = 1, in

other words, asymptotic stability is transferred from the disease-free state to the

new (emerging) endemic equilibrium [47].

It is precisely with an interest in dynamical properties that we now turn our

attention into processes with patterns of spread similar to those of epidemics such

as information flow. More precisely, we consider dissemination of rumors. A rumor

is defined as a specific (or topical) proposition for belief without secure standards

of evidence, which is in general circulation (from person to person) [32, 6, 124, 178].

A core element associated with rumors is its lack of verification. Until the rumor

is comfirmed to be either ‘true’ or ‘false’ it is subject to the dynamics of rumor.

Rumors are similar to news in the sense that they serve as information media on

matters of relevance to the collective, however, rumors differ from news in the

element of authenticity.

In an article about the history of rumor research [32], Bordia and DiFonzo

say that; “In 1935, Jamuna Prasad documented and classified 30 rumors following

a calamitous earthquake in Nothern India and proposed a theory of social and

psychological processes involved in rumor generation and transmission. He claimed
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that there exist five conditions involved in the generation and transmission of

rumors:

“a typical situation leading to the growth of a popular rumor is one which: (a)

sets up an emotional disturbance; (b) is of uncommon and unfamiliar type; (c)

contains many aspects unknown to the individuals affected; (d) contains several

unverifiable factors;[and] (e) is of group interest”

Later in 1950, Prasad compared his collection of field rumors with archival data

on rumors collected from newspapers and historical reports. There were apparent

similarities in the thematic content of rumors across time and cultures. Prasad

asserted that conditions of intense anxiety and uncertainty lead to an attitude

which directed peoples’ attention and response to the situation. More concretely,

he identified four dimensions in this attitude:

(1) Emotional pattern: an affective dimension of anxiety;

(2) Cognitive pattern: a cognitive dimension of uncertainty;

(3) Cultural pattern: a search for meaning in the cultural beliefs and myths;

(4) Social pattern: a feeling of group affiliation and identity induced by the

common situation facing everyone.”

It is natural to pursue mathematical modeling of rumor transmission inspired by

the theory of epidemics. Indeed the earliest references are due to Rapoport (1953)

[175], followed by Daley and Kendall (1964) [64], Cane (1966) [41], Bartholomew

(1976) [21], Pittel (1987) [169], Lefevre and Picard (1994) [128], Gani (2000) [84],
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Pearce (2000) [167], Noymer (2001) [162], Zanette (2001) [215], and Moreno et al.

(2003) [149], to mention but a few.

In this Chapter we introduce the seminal models by Kermack and McKendrick

(epidemics) in Section 2.1, and Daley and Kendall (rumors) in Section 2.2. In

the context of every model we derive and explain the following concepts: initial

growth rate, basic reproductive number, and final spreading size. In Section 2.3

we discuss dynamical properties of an artificial rumor.

2.1 Kermack-McKendrick’s Epidemic Model

The following formulation may be considered as the foundation of epidemiological

compartmental modeling due to Kermack and McKendrick (1927) [123]. Suppose a

closed population of constant size N is divided into three epidemiological classes:

susceptible S, infective I, and recovered R. In symbols, N = S + I + R. Let

us also assume that individuals mix homogeneously, in other words, if β̂ denote

the average number of contacts per individual, then β̂I/N denotes the fraction of

contacts spent with individuals in the I class per person per unit of time. Hence,

adding up over all susceptible, the number Sβ̂I/N denotes the average number

of contacts between all susceptible and infective per unit of time. Moreover, by

multiplying by p̂, the probability of becoming infected given a contact, we then

obtain the number of new cases of infection per unit of time, also known as standard

incidence, p̂β̂SI/N . Let us scale each state variable by the total population size

N , thus define s(t) = S(t)/N , i(t) = I(t)/N , and r(t) = R(t)/N , in such a way

that the following nonlinear system of ordinary differential equations describes the



9

epidemiological dynamics:



s′ = −βsi

i′ = βsi− γi

r′ = γi

(2.1)

where 1 = s + i + r. In addition, β ≡ p̂β̂ denotes the infection rate, the number of

adequate contacts leading to infection, and γ denotes the recovery rate per-capita.

It is standard to model the movements out of the i compartment into the next

compartment by a term like γi which corresponds to an exponentially distributed

waiting time in the i class [106]. In other words, the transfer rate γi corresponds to

P (τ) = e−γτ as the fraction that is still in the infective class τ units after entering

this class and to 1/γ as the mean waiting time (see Appendix A).

The initial growth rate of i(t) will be derived under the assumption of infective

invasion limit, in other words, by linearizing the second equation in system (2.1)

as (s, i) → (1, 0):

∂

∂i
(i′)

∣∣∣∣
s→1,i→0

= β − γ (2.2)

Notice that equation (2.2) implies that in the infective invasion limit, i(t) may

either, grow or decay exponentially according to the sign of β − γ. Furthermore,

from the second equation in system (2.1), observe that at any time t, the factor

βs(t) − γ determines whether i(t) is increasing or decreasing. In view of the

decreasing monotonic behavior of s(t), it then follows that s(t0)β/γ determines an
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epidemic threshold, this is, if s(t0)β/γ > 1 then an epidemic outbreak takes place,

whereas if s(t0)β/γ < 1 then the infective population simply decreases to zero. In

the infective invasion limit, s(t0) → 1, this epidemic threshold becomes R̂0 ≡ β/γ

which is referred to as the basic reproductive number.

In order to derive the final epidemic size, observe that s(t) → s∞, i(t) → 0,

and r(t) → r∞, as t → ∞. Also, by the hypothesis of conservation of “mass”,

we know that 1 = s∞ + r∞. The proportion r∞ is called final epidemic size, as it

corresponds to the proportion of individuals who became infected and eventually

recovered.

The final epidemic size can be computed exactly from the solution of a transcen-

dental equation. Indeed, let us divide the second by the first equation in system

(2.1) and obtain:

di

ds
= −1 +

γ

β

1

s
(2.3)

We integrate in both sides of (2.3) over [t0, t] and obtain:

i(t)− i(t0) = (−1)(s(t)− s(t0)) +
γ

β
ln

(
s(t)

s(t0)

)
(2.4)

Thus, we take limt→∞ in (2.4) and consider s∞ − 1 = γ
β

ln
(

s∞
s0

)
in the infective

invasion limit, (s0, i0) → (1, 0) which yields the following transcendental equation

in r∞ [133, 107]:

e−R̂0r∞ = 1− r∞ (2.5)

The final epidemic size of (2.1) is defined as the unique solution to (2.5), and is

denoted by r̂∞. Clearly, as the basic reproductive number R̂0 increases, then the

final epidemic size r̂∞ becomes larger. Furthermore, it follows from (2.5) that as

R̂0 →∞ then r̂∞ → 1.
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2.2 Daley-Kendall’s Rumor Model

In this Section we summarize the key features of a model proposed by Daley and

Kendall in the context of rumor spreading [63, 64, 65]. The following derivations

are in strong resemblance with those of system (2.1).

Consider a closed homogeneously mixing constant population of size P . Assume

that the population is divided into three classes: those who do not know the rumor,

those who know it and are actively passing it on, and the individuals who know the

rumor and have decided not to spread it anymore. Daley and Kendall called these

classes: ignorant U , spreaders V , and stiflers W . Rumor activation is modeled

as a result of the contacts between ignorant and spreaders, namely by the term

bUV/P . On the other hand, rumor halting is modeled as a consequence of the

contacts between individuals who already know the rumor, meaning that in the

context of rumor dissemination, people are enthusiastic about passing on the word

so long as it is news, once they meet with others who already know the rumor,

it is no longer exciting to spread it. In symbols, rumor halting is modeled by the

term cV (V + W )/P . Now, scale the state variables by the total population size

P , thus, define u(t) = U(t)/P , v(t) = V (t)/P , and w(t) = W (t)/P and obtain the

following nonlinear system: 

u′ = −buv

v′ = buv − cv(v + w)

w′ = cv(v + w)

(2.6)
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where 1 = u + v + w. Also, b and c denote the activation and halting rates,

respectively.

It is straight forward to compute the initial growth rate of v(t), by linearizing

the second equation of (2.6) in the spreaders invasion limit as (u, v) → (1, 0):

∂

∂v
(v′) =

∣∣∣∣
u→1,v→0

= b (2.7)

Therefore, equation (2.7) implies that in the spreaders invasion limit, v(t) grows

exponentially for any parameter values. Unlike system (2.1) where exponential

growth or decay is determined by whether R̂0 > 1 or R̂0 < 1, respectively.

The basic reproductive number of (2.6) is calculated by using 1− u = v + w in

the equation for v′ and observing that the factor [(b + c)u− c] determines either

increasing or decreasing behavior for v(t). Since u(t) is monotonically decreasing

then consider [(b + c)u(t0)− c] which is positive whenever (1 + b/c)u(t0) > 1. In

the spreaders invasion limit, u(t0) → 1, we define the basic reproductive number

by R̃0 ≡ 1 + b/c, that is, R̃0 is always greater than 1.

The proportion of people that eventually learned the rumor can be found as

the solution to a transcendental equation. Indeed, u(t) → u∞, v(t) → 0, and

w(t) → w∞, as t → ∞ with 1 = u∞ + w∞. In (2.6) divide v′ by u′ and integrate

over [t0, t] in order to obtain:

v(t)− v(t0) = −p̃(u(t)− u(t0)) +
c

b
ln

(
u(t)

u(t0)

)
(2.8)

where, p̃ = 1+c/b. By taking limt→∞ then (2.8) reduces to −v0 + p̃(u∞−u0) =

c
b
ln

(
u∞
u0

)
, which in the spreaders invasion limit, (u0, v0) → (1, 0), becomes [133]:

e−R̃0w∞ = 1− w∞ (2.9)
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The final spreading size is defined as the proportion of people that eventually

learned the rumor, and is given by the solution to (2.9) which we denote w̃∞.

Notice that in resemblance with (2.5) it also is true that the final spreading

size becomes larger as the basic reproductive number R̃0 increases. Moreover, it

follows from (2.9) that w̃∞ → 1 as R̃0 →∞.

2.3 Robust Spreading Properties of an Artificial Rumor

In the spirit to follow up with Daley and Kendall’ seminal paper we now com-

ment on the similarities and differences between systems (2.1) and (2.6). Both

models represent populations with individuals in one of three states. The rates

of transitions from the first into the second state are modeled in the same way

in both systems. Yet, the way in which individuals switch from the second into

the third state is modeled remarkably different in both systems. In fact, such

difference implies the lack of an epidemic threshold in system (2.6), where there

is a consistent exponential initial growth for any parameter values. Furthermore,

this difference between the models also reflects in the fraction of individuals who

visited the second state (i.e. solutions to (2.5) and (2.9)).

In nature, epidemics and rumors are completely different processes and no

comparison is valid among them. Thus, with the only objective to have a baseline

we compare models (2.1) and (2.6) in the artificial event of having β/γ ∼ b/c. In

Table 2.1 we summarize the basic reproductive numbers and the final spreading

sizes for both models. If β/γ ∼ b/c then R̃0 > R̂0 which in turn implies that

w̃∞ > r̂∞. In Figure 2.1 we show numerical simulations of the final spreading
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Table 2.1: Relationship between basic reproductive number and final spreading

size in models (2.1) and (2.6).

Epidemic Rumor

Basic Reproductive Number β
γ
≡ R̂0 1 + b

c
≡ R̃0

Final Spreading Size e−R̂0r∞ = 1− r∞ e−R̃0w∞ = 1− w∞

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Epidemic Rumor

Figure 2.1: Comparison of final spreading size in models (2.1) and (2.6) using

β = b and γ = c. Curves g(x) = 1 − x (solid line)and f(x; a) = e−ax (circles and

stars)are displayed versus x, with a = b/c (circles) and a = 1 + b/c (stars). The

parameter values were set b = 1.1 and c = 0.7.
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size with β = b and γ = c. This baseline comparison is suggestive of robust

properties in the caricature of information flow considered in this Chapter: rumors

may spread through a significant fraction of the population with a robust initial

growth.

Individuals tend to behave remarkably different concerning information spread

and disease transmission. Indeed, people would limit their potential infectious

contacts, by various means including washing their hands, covering their mouth

while coughing, or simply isolation. Whereas, they would intentionally gather

information by reading webblogs, reading or watching the news, joining email

lists, or simply by word-of-mouth from their reliable sources. Clearly, regarding

information flow, individuals intentionally expose themselves to various channels

or mechanisms in order to stay up-to-date, in other words, they seek to become

infected.



Chapter 3

Extensions to Daley-Kendall’s Rumor

Models
The literature on extensions to Daley and Kendall’s rumor model [63, 64], has con-

siderably focused on stochastic versions (continuous time Markov chain models)

under the assumption of homogeneously mixing populations. Maki and Thompson

(1973) [140], proposed a simplified model, where in a meeting of two spreaders only

one of them stops passing the rumor. This simplification enabled stochastic analy-

ses by Sudbury (1985) [196], Watson (1987) [205], Lefevre and Picard (1994) [128],

which otherwise were intractable for the Daley-Kendall’s model. Recently, Pearce

(2000) [167], characterized the time-dependent behavior of the Daley-Kendall, and

Maki-Thompson rumor stochastic processes. In contrast, analogous treatments for

the general stochastic epidemic model, date back about 40 years, due to Siskind

(1965) [187], and Gani (1965,1967) [85, 86].

The effects of social landscapes on rumor spread (Daley-Kendall’s model) have

been addressed via Monte Carlo simulations over small-world [215] and scale-free

networks [150], and by derivation of mean-field equations for a population with

heterogeneous ignorant and spreader classes [202]. Zanette [216, 215] discovered re-

gions of localization and propagation in small-world networks and performed large-

scale quantitative characterizations of the evolution in the two regimes. Moreno et

al. [149, 150], inspired by peer-to-peer communication networks, defined measures

of reliability and efficiency and quantified them by numerical means.

16
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This Chapter is organized as follows: in Section 3.1 we present generaliza-

tions to Daley-Kendall’s model for homogeneously mixing populations. In Section

3.2 we introduce random network models, including Erdos-Renyi, Watts-Strogatz,

Barabasi-Albert, and LLYD models. In addition we present a network rumor

model and results from numerical simulations in Watts-Strogatz and LLYD net-

work topologies.

3.1 Homogeneous Mixing Populations with Simple and Com-

plex Dynamics

In this Section we will present basic extensions to the rumor models originally

proposed by Daley and Kendall [63, 64, 65]. Their key contribution was to take

into account how the rate of rumor cessation changes with respect to the density

of spreaders. We will explore how this feature affects the qualitative behavior of

caricature models for the spread of information.

Let us consider a population with two classes: spreaders Y , and non-spreaders

X. The general system is given by,


Ẋ = aX(1− X

k
)− βXY

Ẏ = βXY − Y φ(Y )

(3.1)

where β denotes the rate of rumor activation. The rate of rumor halting is modeled

by the term Y φ(Y ). In the absence of spreaders (Y = 0), this system reduces

to Ẋ = aX(1 − X/k), in other words, the secluded non-spreader population is
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assumed to have a logistic growth with carrying capacity k and intrinsic growth

rate a [35, 201, 214, 152].

The role of density-dependent rumor halting rates in the dynamics of system

(3.1), will be assessed by implementing three particular functions. Each imple-

mentation satisfies ∂Y [Y φ(Y )] > 0, which means that the halting rate increases, as

the spreader population increases.

Let Y φ(Y ) ≡ α1Y , thus system (3.1) becomes,


Ẋ = a1X(1− X

k1
)− β1XY

Ẏ = β1XY − α1Y

(3.2)

System (3.2) supports at least two fixed points: (k1, 0), in the boundary, and

(X̄, Ȳ ), in the interior of R2
+. Let us now outline the conditions for existence

and stability. The nullclines of system (3.2) are given by X ≡ α1

β1
and G(X) ≡

a1

β1
(1 − X

k1
). Clearly, if α1

β1
< k1 then (X̄, Ȳ ) ∈ R2

+. Otherwise, Ȳ < 0 and X̄ > 0.

Now, let J(Ū , V̄ ) denote the system’s jacobian evaluated at a fixed point (Ū , V̄ ).

Since the eigenvalues of J(k1, 0) are {−a1, β1k1 − α1}, then local stability follows

if β1k1 − α1 < 0. On the other hand, the determinant 4, and trace τ , of J(X̄, Ȳ )

are given by,

4 = β2
1X̄Ȳ

τ = −a1

k1
X̄

Hence, (X̄, Ȳ ) is locally stable so long as β1k1 − α1 > 0. In summary, system

(3.2) undergoes a transcritical bifurcation [195, 35], since whenever βk1/α1 < 1,

then (k1, 0), is locally stable. Whereas, if βk1/α1 > 1, then (k1, 0) becomes unstable
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and a locally stable (X̄, Ȳ ) ∈ R2
+ emerges.

In addition, system (3.2) does not support periodic orbits. Let

∂̂X ≡ ∂
∂X

(
1

XY
X(a1 − a1

k1
X − β1Y )

)
= − a1

Y k1

∂̂Y ≡ ∂
∂Y

(
1

XY
Y (β1X − α1)

)
= 0

Since ∂̂X + ∂̂Y < 0, we apply Dulac’s criterion and conclude that system (3.2) has

no periodic orbits [35].

Let us now suppose that Y φ(Y ) ≡ α2Y
2 which implies that system (3.1) reduces

to,


Ẋ = a2X(1− X

k2
)− β2XY

Ẏ = β2XY − α2Y Y

(3.3)

Since the nullclines for system (3.3) are given by F (X) ≡ β2

α2
X, and G(X) ≡

a2

β2
(1− X

k2
), it then is easily seen that (X̄, Ȳ ) ∈ R2

+ for any values of a, α2, k2, and β2.

Furthermore, the eigenvalues of J(k2, 0) are {−a2, β2k2}, whereas the determinant

and trace of J(X̄, Ȳ ) are given by,

4 =
(

a2α2

k2
+ β2

2

)
X̄Ȳ

τ = −
(

a2

k2
X̄ + Ȳ α2

)
Hence, (k2, 0) is unstable and (X̄, Ȳ ) is locally asymptotically stable for any pa-

rameter values. Unlike system (3.2), it is readily seen that system (3.3) does not

undergo any type of bifurcation, since neither the number of fixed points nor their
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qualitative behavior changes with parameter values. This feature is precisely what

Daley and Kendall discovered in [63]. They stated that rumor spreading is a

process that lacks a threshold theorem as opposed to an epidemic.

Also, system (3.3) has no periodic orbits. Again we may apply Dulac’s criterion

by verifying that ∂̂X + ∂̂Y < 0, where,

∂̂X ≡ ∂
∂X

(
1

XY
X(a2 − a2

k2
X − β2Y )

)
= − a2

k2Y

∂̂X ≡ ∂
∂Y

(
1

XY
Y (β2X − α2Y )

)
= −α2

X

Next, let us consider Y φ(Y ) ≡ Y α
1+Y

, then following system is obtained,


Ẋ = aX(1− X

k
)− βXY

Ẏ = βXY − Y α
1+Y

(3.4)

In system (3.4), the rumor halting rate, Y φ(Y ), is bounded as Y → ∞. It also

is increasing with the population of spreaders, in symbols, ∂Y [Y φ(Y )] > 0. Yet

φ′(Y ) < 0, meaning that due to a dilution effect, the fraction of effectively con-

tacted spreaders per spreader, φ(Y ), decreases with Y . In the Theoretical Ecology

literature, these features are referred to as functional response [214, 35, 142].

Below, we outline the conditions for existence and stability of fixed points

and prove that this particular choice of rumor halting rate generates sustained

oscillations in system (3.4).

Proposition 3.1.1. If βk − α < 0, then the fixed point (k, 0) is locally asymptot-

ically stable. If βk − α > 0 , then there exists a fixed point (X̄, Ȳ ) ∈ R2
+.
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Proof: The spectrum of J(k, 0) is {−a, βk − α}. Hence, local stability holds

whenever βk − α < 0.

In order to prove existence of the interior fixed point, (X̄, Ȳ ), we solve for X in

βX − α
1+Y

= 0 and replace it in a(1− X
k
)−βY = 0. Thus, we obtain the following

quadratic equation:

0 = AY 2 + BY + C (3.5)

where, A = −β2k < 0,B = kβ(a − β) < 0, and C = a(kβ − α). Notice that

B2−4AC = (kβ)2(a−β)2+4akβ2(kβ−α) > 0 given that we assume βk−α > 0. If

β = a, then B = 0, and it follows that the only positive real root occurs whenever

C > 0. Next, if β < a, then B > 0, in such case, −B/2A > 0, which implies

the existence of a positive real root provided that C > 0. Finally, if β > a then

−B/2A < 0 and as a result a positive real root exists.

Theorem 3.1.1. Assume that βk−α > 0. Then, a Hopf bifurcation occurs at the

interior fixed point, (X̄, Ȳ ), if

β
a
(2Ȳ + 1) > 1 and α = (βk)2

[
β(k−1)−a
(βk−a)2

]
Proof: Since the determinant of J(X̄, Ȳ ) is given by4 = βX̄Ȳ

1+Ȳ

[
β(2Ȳ + 1)− a

]
,

it follows that 4 > 0 whenever β
a
(2Ȳ + 1) > 1.

Next, observe that τ , the trace of J(X̄, Ȳ ), is equal to zero if and only if

β2

α
X̄ = −a

k
+ β.

In view of τ = −a
k
X̄ + βX̄ − α

(1+Ȳ )2
, and by using (1 + Ȳ )2 = α2

β2X̄2 , we obtain,

τ = X̄
(
−a

k
+ β − β2X̄

α

)
.
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Figure 3.1: Numerical simulations of system (3.4) with a stable spiral. Parameter

values were chosen such that 4 > 0 and τ < 0; X(t0) = 3.5,Y (t0) = 0.5,a = 1,α =

4.8,β = 1,k = 5.

Using the fixed point conditions, we have that

a

β
(1− X̄

k
) = −1 +

α

βX̄
(3.6)

By the previous result we know that τ = 0 if and only if X̄ = α
β2

(
−a

k
+ β

)
, thus

plugging this into (3.6) and solving for α, we obtain,

α = (βk)2

[
β(k − 1)− a

(βk − a)2

]
In other to illustrate the Hopf bifurcation, we display in Figures 3.1 and 3.2,

simulations of of a stable spiral and limit cycle.

In summary, distinct choices of rumor halting rates determine various patterns

of rumor spread. Indeed, whenever Y φ(Y ) = α2Y Y , the spreaders population

shows a robust asymptotic behavior by saturating around a fixed point for any

choice of the model parameters. On the other hand, sustained oscillations result
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Figure 3.2: Numerical simulations of system (3.4) with a stable limit cycle. Pa-

rameter values were selected to satisfy 4 > 0 and τ > 0; X(t0) = 3.5,Y (t0) =

0.5,a = 1,α = 3,β = 1,k = 5.

from a rumor halting rate Y φ(Y ) = αY/(1 + Y ) which is bounded, increasing

and with a decreasing fraction of effectively contacted spreaders per spreader φ(Y )

(due to a dilution effect in homogeneously mixing populations).

3.2 Heterogeneous Mixing Populations: Network Rumor

Models

Modeling transmission dynamics of disease is often challenged by how to find

adequate ways to incorporate the underlaying contact structures into the model [40,

48, 18, 115, 160, 143]. Moreover, the study of spreading phenomena in particular

network structures has received considerable attention [143, 157, 71].
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Network Model 1. (Erdös-Rényi)

Suppose there are n disconnected nodes, and that ne edges

between nodes will be made. Fix pER ∈ (0, 1).

For each iteration t = 1, 2, . . . , ne

step 1. Select a pair of nodes, uniformly at random.

step 2. With probability pER connect the pair by an edge.

As explained by Chowell et al.[58];“Erdős and Rényi introduced a simple al-

gorithm to generate random graphs [30]. The algorithm is initialized with a fixed

number of disconnected nodes n and proceeds to connect (with an edge) with prob-

ability pER each pair of nodes independently. Hence, pER = 0 corresponds to the

case where every node remains disconnected from any of the other n − 1 nodes,

whereas pER = 1 corresponds to the case where all nodes are connected to each

other (every node has n − 1 edges). The total number of edges when pER = 1

is n(n−1)
2

; the average number of edges is n(n−1)pER

2
; and the average degree of a

node (number of edges incident from a node) is z = (n − 1)pER ≈ npER (Poisson

convergence [30, 72]). Erdős and Rényi [30] proved that for large graphs (large

n) the probability that each node has k edges converges to a Poisson distribution

P (k) = exp(−z)zk

k!
, (k = 0, 1, . . . , n)”. Erdős-Rényi graphs are not necessarily con-

nected, in fact, for small values of pER the graph is typically composed of a large

number of small, disconnected components [30]. In other words, there is a critical

value zc such that if z > zc then a spanning cluster (a subset of nodes such that

every arbitrary pair of nodes within can be connected by a path) emerges [71, 134].
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Network Model 2. (Small-World; Watts-Strogatz)

Suppose there is a ring lattice with n nodes and 2k edges

per node. Fix a step ε ∈ (0, 1), such that the interval [0, 1]

is partitioned by, 0 < ε < 2ε < 3ε < · · · < 1.

For each iteration t = 1, 2, 3, . . .

step 1. Let pWS = (t− 1)ε.

step 2. In the ring lattice, re-wire each edge at random

with probability pWS.

As Chowell et al.[58] observed;“Watts and Strogatz [207] introduced a model of

networks that interpolate between the regular lattice and a random graph (Erdős-

Rényi). Their algorithm (WS) starts up with a one-dimensional periodic ring lat-

tice of n nodes connected to its 2k nearest neighbors. Then, every edge is removed

and “rewired” to a randomly selected node with probability pWS, i. e. one end of

the edge is shifted to a new randomly chosen node from the whole lattice”. The

random rewiring is constrained to satisfy that every pair of nodes has at most one

edge connecting them and a single node cannot connect to itself. Those rewired

edges are referred to as long-range connections. When the disorder parameter

pWS = 0, then the algorithm leaves the lattice intact. When the disorder parame-

ter pWS → 1 then all edges are rewired and the resulting network is equivalent to

a random graph (Erdős-Rényi) [134, 207]. Watts and Strogatz showed that a few

long-range connections (pWS ∼ 0.01) would drastically reduce the average distance

between any pair of nodes, a property that enhances transmission. This property
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Figure 3.3: The solid curve with squares displays the dependence of the average

path length, relative to the average path length of the unrewired lattice, on the per-

edge disorder parameter pWS. The solid curve with circles shows the clustering

coefficients, relative to that of the unrewired lattice. Each point on the figure

represents the average value taken over 50 realizations of the rewired network with

1000 nodes.
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is known as the “small-world effect”. It was discovered by the psychologist Stan-

ley Milgram (1960) [145], as a result of letter-forwarding experiments. Networks

built up by the WS algorithm account with high levels of cliquishness in a typical

neighborhood (those nodes adjacent to a particular node). Watts and Strogatz

quantified these structural properties by measuring the characteristic path length

and the clustering coefficient (see Figure 3.3). The characteristic path length is

defined as the number of edges in the shortest path between two nodes, averaged

over all pairs of nodes. In a survey article about infection dynamics on small-world

networks, Lloyd et al.[134] explain; “The cliquishness or clustering coefficient ex-

amines to which extent the neighborhoods of connected nodes overlap. All the

triples in the network (i. e. paths of length three; node A is connected to node

B which is connected to node C) are examined and the clustering coefficient is

calculated as the fraction of these that close up into triangles (i.e. those for which

node A is also directly connected to node C).”

The degree or connectivity distribution of small-world networks depends on the

disorder parameter pWS; when pWS = 0, the degree distribution is a delta function

centered at 2k, whereas, as pWS → 1, the degree or connectivity distribution

converges to that of an Erdős-Rényi graph.

The bell-shapped degree distributions observed in the Erdős-Rényi and Watts-

Strogatz models contrast with the highly right-skewed (power law) degree distribu-

tions observed in a number of biological [116], social [56, 15, 16, 17, 129, 154, 155],

and technological [15, 16] networks. Power-law degree distributions are given by

P (k) = Ck−α (3.7)
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where P (k) denotes the probability that a randomly selected node has degree k, α

is typically between 2 and 3 (infinite variance), and C is a normalization constant.

The degrees of the nodes in a power-law network are distributed so that most nodes

have only a handful of connections and few nodes are highly connected. Barabási

and Albert [15] called these types of structures scale-free networks and conveyed

that such scaling is a signature of self-organization.

Network Model 3. (Scale-Free; Barabási-Albert)

Fix the network size n. Suppose there are initially n0 fully

connected nodes. Fix m, the number of edges for each new

node.

For each iteration t = 1, 2, . . . , n− n0

step 1. Add a new node with m edges. Make the m edges

with probabilities (π1, π2, . . . ). For an existing node

i, with ki edges, define πi, the probability that the

new node will connect to existing node i, by,

πi =
ki∑
j kj

, (preferential attachment)

Barabási and Albert [15] proposed an algorithm to construct scale-free networks

incorporating a property called preferential attachment. It is initialized with a

small number of nodes m0. Then, at every time step a new node is added with

m edges that connect the new node to m existing different nodes in the current

network. It is assumed that the probability πi that a new node will be connected

to node i depends on the connectivity (degree) ki of that node, such that πi(ki) ≡
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ki/
∑

j kj. Clearly, the new node will most likely connect to those nodes with more

connections (high ki).

Network Model 4. (LLYD;Lui-Lai-Ye-Dasgupta)

Fix the network size n. Suppose there are initially n0 fully

connected nodes. Fix m, the number of edges for each new

node. Fix a step ε ∈ (0, 1), such that the interval [0, 1] is

partitioned by, 0 < ε < 2ε < 3ε < · · · < 1.

For each iteration t = 1, 2, . . . , n− n0

step 1. Set pLL = (t− 1)ε.

step 2. Add a new node with m edges. Make the m edges

with probabilities (Π1, Π2, . . . ). For an existing node

i, with ki edges, define the probability that the new

node will connect to existing node i, by,

Πi =
pLL + (1− pLL)ki∑
j [pLL + (1− pLL)kj]

As observed by Chowell et al. [58];“Lui, Lai, Ye, and Dasgupta (LLYD) [132]

extended the Barabási-Albert model for scale-free networks by allowing new con-

nections to be made uniformly at random to any other node in the networks.

Each new node connects to m existing nodes uniformly at random with proba-

bility pLL and following preferential attachment with probability 1− pLL. Hence,

the probability Πi that a new node will connect to an existing node i, is given by

Πi = qi/
∑

j qj, where qi = pLL + (1− pLL)ki. Large LLYD networks [132] have a
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Table 3.1: Network rumor (Daley-Kendall) model. Nodes of a random network

may be in one of three states: ignorant, spreader, or stifler. Neighbors are those

nodes connected by an edge. Vi and Wi denote the numbers of i-neighbors which

are in states spreader and stifler, respectively.

Event Transition Probability of Transition

Rumor Activation node i changes from

ignorant into spreader 1− exp(−bVi)

Rumor Halting node i changes from

spreader into stifler 1− exp(−c(Vi +Wi))

degree distribution P (k) ∼ k−c (scale-free) as p → 0 whereas P (k) ∼ exp(−k/m)

(Erdős-Rényi) as p → 1.”

Random networks and stochastic rumor models can be used to asses the role of

social landscapes (structures) in rumor dissemination, where the nodes represent

individuals in a population [216, 215, 149, 150, 29]. There is an edge between two

nodes if the individuals represented by the nodes have contacts with each other

that facilitate information transfer. Furthermore, nodes are assumed to be either,

ignorant, spreader, or stifler. An ignorant node i, in contact with Vi spreader

nodes may become spreader with a probability given by 1 − e−bVi where b is the

constant rumor activation rate. A spreader node j, in contact with Vj spreaders

and Wj stiflers, may become a stifler with probability 1−e−c(Vj+Wj), where c is the

rumor halting rate. Discrete-time steps of length one (generations of spreaders)

are assumed.
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As a result of this stochastic formulation (see Table 3.1), in network rumor

models, both the initial growth rate and the final spreading size are random vari-

ables. The role of social structure in rumor dynamics will be assessed by sam-

pling the empirical distributions of the initial growth rate and final spreading

size, from simulated “outbreaks”. This analysis technique is strongly inspired by

[55, 58, 134, 215, 149].

We explain below how the sampling was carried out from stochastic simulations

of the model in Table 3.1.

Final spreading size sample: in each realization set up a counter to quantify

how many times the event rumor activation (Table 3.1) takes place. Over one single

realization the last count registers the final spreading size, i. e. the number of

nodes that became spreaders, this count -in principle- corresponds to w̃∞, defined

by equation (2.9).

Initial growth rate sample: Let Y be a matrix whose columns store the the

numbers of spreaders in time over all realizations of the model in Table 3.1. In

such a way that the column {Yij}i=1,2,...,t̃ is the spreaders time series for realization

j. Consider the average rate of change in the time interval [i, i + 1],

Yi+1,j − Yi,j, for i = 1, 2, . . . , t̃ (3.8)

In realization j, the sample of the initial growth rate is the mean of the positive

entries of the vector defined by (3.8). Observe that this sample of the initial growth

rate -in principle- corresponds to R̃0 from Table 2.1.

Figure 3.4 displays frequency distributions of the final spreading size, in small-

world networks. The distribution shown in Panel (a) corresponds to graphs ob-
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tained using WS algorithm with pWS = 0.0001738. These networks are nearly

regular lattices (Figure 3.3) which in turn are locally “well connected” (large clus-

tering) and result with long path lengths [134]. Many of the samples seem to fall

below 50% of the population total size with a fairly wide distribution, supporting

the rumor localization behavior discovered by Zanette [215]. Panel (b) displays the

distribution sampled by using pWS = 0.8318. In these networks the rumor reached

over 94% of the population with a tight distribution around the mean unlike (a).

Figure 3.5 depicts the frequency distributions of the initial growth rate, in

small-world networks. Both Panel (a) and Panel (b) are consistent with Figure

3.4; since for a small value of pWS the initial growth distribution ranges within low

numbers, and when pWS takes a large value the distribution falls within manifestly

higher rates. Furthermore, these results are again in agreement with Zanette’s

localization-propagation critical transition [215].

The fervid increase in both the final spreading size and the initial growth rate

across WS topologies is due to dynamical properties similar to those of (2.6).

Indeed, by incrementing the disorder parameter pWS, the characteristic path length

undergoes a “phase transition” [207] (Figure 3.3). As a result, networks with a

low path length (pWS → 1) show an optimal landscape for transmission, as they

correspond qualitatively to a large rumor activation rate b -in terms of (2.6)-. In

fact, we recall from (2.9) that increments in R̃0 imply larger final spreading sizes

w̃∞, precisely what is observed in Figures 3.4 and 3.5.

Figure 3.6 shows samples obtained over several values of pWS with b/c = 1.

Panel (a) displays the mean of the final spreading size distributions as a function
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Figure 3.4: Final spreading size distributions in small-world networks with 1000

nodes and 4 edges per node at pWS = 0. Results of 45 realizations are displayed

where b/c = 1. In Panel (a), the frequency distribution corresponds to pWS =

0.0001738, with mean equal to 321.76 and standard deviation of 75.69. In Panel

(b), the distribution corresponds to pWS = 0.8318, with mean equal to 962.51 and

standard deviation equal to 7.92.
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Figure 3.5: Initial growth rate distributions in small-world networks with 1000

nodes and 4 edges per node at pWS = 0. Results of 45 realizations are displayed

where b/c = 1. In Panel (a), the distribution corresponds to pWS = 0.0001738, with

mean 2.14 and standard deviation 0.58. In Panel (b), the frequency distribution

corresponds to pWS = 0.8318, with mean equal to 58.83 and standard deviation

8.52.
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of pWS in a semi-log scale. On the other hand, Panel (b) shows the mean of

the initial growth rate distributions as it varies with the network architecture

pWS. Over a bigger range of values of pWS the pattern identified in Figures 3.4

and 3.5 is preserved. In other words, the average final spreading size seems to

be correlated with the mean initial growth rate. We observe in Figure 3.6(a)

that with a rewiring probability of at least pWS = 0.1, then nearly 100% of the

population became spreaders (on average). This saturation effect is also observed

in the homogeneous-mixing model as w̃∞ → 1 as R̃0 →∞ in (2.9).

Figure 3.7 displays samples taken over LLYD networks with b/c = 1. In both

Panel (a) and (b) the mean of final spreading size and initial growth rate dis-

tributions is depicted as a function of the disorder parameter pLL. Neither the

final spreading size nor the initial growth seems to be sensitive to the network

architecture. In other words, unlike in small-world topologies, the average final

spreading size does not undergo a sharp transition, instead it remains with very

low variability across LLYD networks. Over 90% of the population became spread-

ers, consistently as pLL varies. Yet, in resemblance to Figure 3.6, the mean final

spreading size and initial growth rate appear to be correlated.

In order to enhance the role of community structure in transmission, we set

b/c = 0.4 and sampled from small-world and LLYD networks. In the case of small-

world networks -Figure 3.8(a)- we observe that Zanette’s localization [215] is more

punctuated yet as pWS → 1, on average, nearly 50% of the population became

spreaders. In addition, the trends in Figure 3.8 are consistent those of Figure

3.6. In the case of LLYD networks -Figure 3.9(a)- we observe that on average
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Figure 3.6: Dependence of the final spreading size -Panel (a) in proportions- and

initial growth rate -Panel (b)- on the network architecture, pWS, in small-world

networks with 1000 nodes and 4 edges per node at pWS = 0. The mean (circles

in (a) and squares in (b)) of 45 realizations and 95% confidence intervals (solid

curve) are depicted, with b/c = 1 and 7 initial spreader nodes chosen uniformly at

random.
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Figure 3.7: Dependence of the final spreading size -Panel (a) in proportions- and

initial growth rate -Panel (b)- on the disorder parameter, pLL, in LLYD networks

with 1000 nodes and m = 2. The mean (circles in (a) and squares in (b)) of 45

realizations and 95% confidence intervals (solid curve) are displayed, with b/c = 1

and 7 initial spreader nodes chosen uniformly at random.
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between 46-48% of the population became spreaders, consistently across all the

values of pLL. Hence, even under less favorable conditions of transmission (lower

b/c), the rumor reaches on average half of the population: for a moderate family

of small-world networks (pWs → 1), and for most of the LLYD networks.

In summary, we have quantified the effect of social landscapes in rumor trans-

mission by way of sampling the empirical distributions of the final spreading size

(analogous to w̃∞ in (2.9)), and the initial growth rate (analogous to R̃0 in (2.9)).

The samples were the outcomes of multiple stochastic realizations of rumor simu-

lated outbreaks. We confirmed that social networks enhance the dissemination of

rumors. Both the initial growth and final size are sensitive to the network topol-

ogy. Small-world networks exhibit regions of transitions in the final size and initial

growth, which are consistent with their structural properties. On the other hand,

LLYD networks seem to inherit the structural properties of scale-free networks

across all values of pLL. In this regard, we consider LLYD networks as landscapes

that provide optimal transmission.
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Figure 3.8: Final spreading size -Panel (a) in proportions- and initial growth rate

-Panel (b)- as functions of pWS, in small-world networks with 1000 nodes and 4

edges per node at pWS = 0. The mean (circles in (a) and squares in (b)) of 50

realizations and 95% confidence intervals (solid curve) are shown, with b/c = 0.4

and 7 initial spreader nodes chosen uniformly at random.
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Figure 3.9: Final spreading size -Panel (a) in proportions- and initial growth rate

-Panel (b)- as functions of pLL, in LLYD networks with 1000 nodes and m = 2.

The mean (circles in (a) and squares in (b)) of 50 realizations and 95% confidence

intervals (solid curve) are displayed, with b/c = 0.4 and 7 initial spreader nodes

chosen uniformly at random.



Chapter 4

Stochastic Search Methods
The validation of differential equation models -like those introduced in Chapters

2 and 3- against empirical data brings the qualitative analysis of the systems to

a precious level of understanding. Indeed, once linear stability and/or bifurca-

tion analyses provide conditions of existence for various attractors, then having

estimates on the models parameter values [43], enable further discussions includ-

ing reliable predictions, and in the case of epidemiological models for example;

assessment of control strategies [57, 168].

This Chapter conveys the application of Genetic Algorithms to the estimation

of parameters in the differential equation models used in Theoretical Epidemiology

[27]. The methods presented herein employ evaluations of an objective function

without any computation of its gradient, the so called direct random search methods

[126, 191].

This Chapter is organized as follows: in Section 4.1 we formulate the optimiza-

tion problem involved in the parameter estimation. In Section 4.2 we present a

fundamental convergence result of a random search algorithm. Sections 4.3 and 4.4

summarize the core steps of Genetic Algorithms and their application to epidemio-

logical modeling. In addition, Appendix D contains a description of the MATLAB

(a registered trademark of the The Mathworks Inc.) code that implements the

algorithms described in this Chapter.

41
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4.1 Formulation of the Optimization Problem

We consider the following nonlinear system of differential equations:

ẋ = g(x(t, θ), θ) (4.1)

where x = (x1, x2, . . . , xm) ∈ Rm and θ ∈ Rp. Henceforth, the vector θ is referred

to as the parameter.

Without loss of generality suppose I(t, θ) = x1(t, θ). Also, let us assume there

is a vector of observations Y = (Y1, Y2, . . . , Yn̄)T . Define the objective (residuals)

function J(θ) as follows:

J(θ) =
1

n̄

n̄∑
i=1

[I(ti; θ)− Yi]
2 (4.2)

The parameter estimation in system (4.1) given the vector of observations Y , is

determined by the solution to the following optimization problem:

min
θ∈F

J(θ) (4.3)

where F denotes a feasible region defined by box and inequality constraints. Let

θ̂ denote the solution to (4.3) and is referred to as the estimator. Observe that

in general, the solution to (4.1) x(t, θ) has no closed form, which implies that the

estimation (4.3) is an inverse problem [14].

In addition to θ̂, it is required to estimate the joint probability distribution

P (θ̂), as it will enable us to determine the sensitivity of θ̂ on the observed data un-

certainty levels. In particular, E[θ̂] and var[θ̂] are adequate measures of sensitivity

[14, 27, 183, 11].
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The uncertainty on the observed data is modeled by [14],

Yi = I(ti, θ0) + εi, i = 1, 2, . . . , n̄ (4.4)

where εi is assumed to be a normal random variable with mean zero and variance

σ2
0, we write εi ∼ Ni(0, σ

2
0). Moreover, θ0 denotes the theoretical “true” parameter

value and σ2
0 is the true variance for the system under observation. Both quantities

are generally unknown, yet θ0 ≈ θ̂ and σ2
0 ≈ J(θ̂) [14].

4.2 Localized Random Search

Consider the following optimization problem,

min
θ∈S

J(θ) (4.5)

where, S = {v : v ∈ Rp, ||v|| < r̄}, J ∈ C0(Rp), and J : Rp → R.

Baba et al. [12] proposed Algorithm 1 (below) to solve (4.5) by localized random

search. Localized random search methods use random sampling to generate new

iterates as a function of the current best estimate for θ̂. In this sense, the search

remains localized in a neighborhood of that estimate enabling a better employment

of the information gained thus far about reductions in J .

Consider a, c ∈ R with c > 0, and a random variable Y that has standard

normal distribution, i. e. Y ∼ N (0, 1). In Appendix B we prove that the following

are true:

cY ∼ N (0, c2)

a + cY ∼ N (a, c2)
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in other words, a + cY is a normal random variable with E[a + cY ] = a and

var(a+cY) = c2. The updates in Algorithm 1 are in principle analogous to a+cY ,

where a normal random variable with zero mean cY is added to a scalar a. Using

the notation in Algorithm 1 and considering updates componentwise, we write for

instance, θ1 + ξ1 where ξ1 ∼ N (0, c2
1). Is in this sense that the algorithm traverses

randomly (by adding Gaussian noise) through the parameter space S.

Algorithm 1. (Initialization) Select an initial point

θ(1) ∈ S ⊂ Rp.

Iteration FOR k = 2, 3, . . .

STEP 1 Generate an independent p-dimensional

normal random vector with zero mean ξ(k), i.e.

ξ(k) ∼ Np(0, Σ)

STEP 2 IF θ(k) + ξ(k) /∈ S, θ(k+1) def
= θ(k).

ELSE compute J(θ(k) + ξ(k)).

IF J(θ(k) + ξ(k)) < J(θ(k)),

θ(k+1) def
= θ(k) + ξ(k).

ELSE θ(k+1) def
= θ(k).

Theorem 4.2.1. (Baba-Shoman-Sawaragi). Suppose that J is continuous on

S. Let G be the set of multiple minima of J in S. For a given θ̂ ∈ G, let Rε(θ̂) be

a region defined by

Rε(θ̂) = {θ ∈ S : |J(θ)− J(θ̂)| < ε}

Therefore, for any ε > 0, the sequence {θ(k)}∞k=1 obtained by Algorithm 1, converges
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in probability to the region
⋃

θ̂∈G Rε(θ̂), i.e.

lim
k→∞

P

θ(k) ∈
⋃
θ̂∈G

Rε(θ̂)

 = 1

The proof of Theorem 4.2.1 is due to Baba et al. [12] which is reproduced

for completeness in Appendix C. As observed by Spall [191]; formal results of

convergence (in probability) to global optima of various localized random search

algorithms are due to Matyas (1965) [141], Yakowitz and Fisher (1973) [213], and

Solis and Wets (1981) [189]. Rates of convergence are aimed to track how close

θ(k) is likely to be from θ̂; usually the rates of convergence are estimated by the

expected number of iterations required to enter a neighborhood of θ̂ (satisfactory

region) with some probability. Zhigljavsky (1991) [217], proposed estimates on the

rate of convergence of Algorithm 1.

4.3 Genetic Algorithms (GA)

Genetic Algorithms (GA) belong to a class of stochastic search and optimization

methods classified as Evolutionary Computation which includes methods based on

the principles of natural evolution and survival of the fittest. It is customary, in

the GA literature, to employ a fitness function that stress the evolutionary concept

of the fittest of a species having a greater likelihood of surviving and passing on

its genetic material [191].

As explained by Spall [191]; “[Unlike Algorithm 1], ... Genetic Algorithms

work with a population of potential solutions to the problem [formulated in (4.3)].

GA’s simultaneously consider multiple candidate solutions to the problem of min-
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imizing J(θ) and iterate by moving this population of candidate solutions toward

(one hopes) a global minimum. The terms iteration and generation are used in-

terchangeably to describe the process of transforming one population of solutions

to another. If the GA is successful, the population of solutions will cluster at the

global optimum after some number of iterations.

Specific values of θ are referred to as chromosomes. The central idea in a GA

is to move a set (population) of chromosomes from an initial collection of values

to a point where the fitness function is optimized.”

For further details about evolutionary computation including genetic algo-

rithms please refer to [191, 110, 96].

Below we outline the core steps in a GA [191], which will be introduced in the

next Section 4.4 in the context of parameter estimation of epidemiological models.

Algorithm 2. Basic Genetic Algorithm (GA)

STEP 0. Initialization: Randomly generate an initial population of N chromo-

somes and evaluate the fitness function for each of the chromosomes.

STEP 1. Parent selection: Select Ne parents from the full population, according

to their fitness, with those chromosomes having a higher fitness value being

selected more often.

STEP 2. Replacement and mutation: While retaining the Ne best chromo-

somes from the previous generation, replace the remaining N −Ne chromo-

somes with a new population generated by the Ne chromosomes; where each

new “child” is obtained by a small modification or mutation of a parent,
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child = φ(parent), for some function φ.

STEP 3. Fitness and end test: Compute the fitness values for the new popula-

tion of N chromosomes. Terminate the algorithm if the stopping criterion is

met or if the budget of fitness function evaluations is exhausted; else return

to STEP 1.

4.4 Epidemiological Parameter Estimation via GA

We consider Algorithm 3 in order to solve (4.3) in the context of epidemiological

modeling. In other words, in system (4.1) the state variable x models epidemiologi-

cal classes changing in time t and the observed data Y corresponds, for instance, to

incidence longitudinal data. This application of GA’s in the context of estimation

of epidemiological parameters is, to the best of our knowledge, due to Bettencourt

(2004) [27, 26].

In every iteration k of Algorithm 3, a population of potential solutions is em-

ployed, which is denoted by θ
(k)
1 , θ

(k)
2 , . . . , θ

(k)
n1 ∈ F . In the initialization every

component of every parameter is drawn uniformly at random according to the box

constraints specified by F .

Step 1 in Algorithm 3, pursues to find the distance between the observed

data Y and I(t, θ
(k)
j ) for all j, 1 ≤ j ≤ n1. This implicitly requires to find

the solution x(t, θ
(k)
j ) to (4.1) and then evaluate J(θ

(k)
j ), which is attained by

numerical integration over all the population of parameters in use by the GA.
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Algorithm 3. Initialization. Choose uniformly at random

θ
(1)
1 , θ

(1)
2 , . . . , θ

(1)
n1 ∈ F .

Iteration FOR k = 1, 2, . . . , n2

STEP 1. Iteration FOR j = 1, 2. . . . , n1

Solve numerically system (4.1) and save J(θ
(k)
j ).

STEP 2. Optimization. From STEP 1 determine mini-

mizer θ̂(k).

STEP 3. Parent Selection. Let M (k) denote the set of par-

ents. Compute and save M (k).

STEP 4. Replacement and Mutation. For each

θ
(k)

child
/∈ M (k) choose q ∈ M (k) uniformly at random. Re-

place θ
(k)

child
by θ

(k+1)

child
= φ(q). If θ

(k+1)

child
/∈ F , repeat re-

placement until feasibility is attained.

STEP 5. Set k
def
= k + 1, go to STEP 1.

The parent selection in step 3 of Algorithm 3, is determined by the parameters’

fitness. Consider f(z; b) = b/z for z ∈ (b,∞) with b > 0. Clearly, f ↑ 1 as z ↓ b+

due to the monotonicity of f acting in reverse order through the domain. More

concretely, let us consider J(θ̂) and J(θ) where θ̂ is the solution to (4.3) and θ

is any parameter in F . Thus, J(θ̂)/J(θ) ↑ 1 as J(θ) ↓ J(θ̂). The fitness of the

parameter θ will be determined by the ratio J(θ̂)/J(θ), in such a way that the fittest

parameters are identified as this ratio approaches 1 (maximization of the fitness
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function). The parents will be those parameters q that satisfy τ < J(θ̂)/J(q) ≤ 1

for some fixed τ ∈ (0.9, 1). The set of parents in k-th iteration M (k), computed in

step 3 of Algorithm 3, is defined by

M (k) =

{
θ

(k)
j : J(θ̂(k))

J(θ
(k)
j )

> τ, 1 ≤ j ≤ n1

}
(4.6)

The population of parameters at iteration k is then divided into those in M (k)

(parents) and those lying outside of it (future off-spring). In step 4 of Algorithm

3, the term θ
(k)

child
denotes an arbitrary parameter that is not a parent and which

is to be replaced (or updated) for the next iteration.

The replacement is a mutation (function φ(q)) of one the parents q ∈ M (k),

chosen uniformly at random. Recall that for any q ∈ M (k), τ < J(θ̂(k))/J(q) ≤ 1.

Thus, 0 < α
(
1− J(θ̂(k))

J(q)

)
≤ α(1− τ). Define cq = α

(
1− J(θ̂(k))

J(q)

)
for an arbitrary

q ∈ M (k). Observe that cq is a function of the parent’s fitness as it involves the

relative distance between the parent q and the estimator θ̂(k). Let the mutation

function φ(q) be defined by,

φ(q) = q + diag(cqξ1, . . . , cqξp)× q

In such a way that [φ(q)]i = qi + cqξiqi, for 1 ≤ i ≤ p. Here, ξi ∼ N (0, 1) which

in turn implies cqξi ∼ N (0, c2
q) (see Appendix B). Therefore, the parent’s fitness

cq is employed to weight the variance of the gaussian noise in the mutation that

generates the parameter for the forthcoming iteration.

The cluster of the fittest parameters through all the iterations is given by,

n2⋃
k=1

M (k) = {π1, π2, π3, . . . } (4.7)
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We will approximate the joint distribution P (θ̂) by using the samples from

(4.7). Indeed, define ωj = exp(−J(πj))/
(∑

l exp(−J(πl))
)

for some fixed j, and

let P (θ̂ = πj) ≈ ωj. Hence, we choose a function of the distance between the

parameter πj and the observations Y , as an approximation to the joint distribution,

in such a way that those parameters with a short distance are weighted heavier

than those far away, in the same spirit as the mutation function uses the parent’s

fitness.

It is easily seen that
∑

j ωj = 1. Recall that θ̂ = (θ̂1, . . . , θ̂p). Thus, for any i,

1 ≤ i ≤ p, define

E[θ̂i] =
∑

j

πj
i ωj

def
= µ̄ (4.8)

var[θ̂i] =
∑

j

(
πj

i − µ̄
)2

ωj (4.9)

The GA summarized in Algorithm 3 provides estimates for the joint distribution

P (θ̂), along with E[θ̂i] and var[θ̂i] which constitute measures of sensitivity of θ̂ on

the uncertainty in the observations Y [27, 14].



Chapter 5

Growth Dynamics in Scientific

Literature
Social Contagion pertains to the dissemination of an entity or influence between

individuals in a population by means of social contacts [121, 70]. As we pointed out

in Chapter 2, due to the similarities -in the patterns of spread- between epidemics

and social contagion processes, it is natural to address the later based on theoretical

principles of the former. For instance, Gladwell [89] proposed analyses of violence

and crime prevention in New York City, based on the concept of a “tipping point”

or a threshold at which a stable phenomenon can turn into a social crisis.

Social Contagion includes processes where individuals choose to adopt a par-

ticular behavior contingent on the history of decisions made by others [28, 185,

98, 206, 19, 38, 151]. In fact, there are studies addressing the effects of “viral

marketing” in the context of successful product launching [22, 176, 139].

Other events related to Social Contagion are ecstasy consumption [190] and

fanatic behaviors [46]. Simple caricature contagion models have sufficed to de-

termine that peer pressure and “core” (ultra) fanatics drive backward bifurcations,

implying that it becomes extremely difficult to eliminate an established population

of either fanatics[46] or ecstasy consumers[190].

In 1985, Fan [77] modeled the transmission dynamics of ideas. Fan proposed

for “ideas” to be structured as mutually exclusive states within “issues” -inspired

by alleles being alternative states of genes in genetics-. Furthermore, he gave em-

51
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phasis to the content of messages transmitted between people, instead of the usual

focus on the contact structure among transmitters. Fan proposed that messages

transmitted to receivers would be quantified by units he called “infons”, which

refer to a single packet of information transmitted in identical copies to a group

of people. Integro-differential equations were implemented [77] to model the evo-

lution of ideas with the structure just described. An advantage of this modeling is

that emphasizes the time course in the spread of ideas regardless of their inherent

values. Recently [78], Fan applied this methodology -ideodynamics- to predict the

time trend of public opinion about the economy as quantified by the index of Con-

sumer Sentiment compiled by the University of Michigan. Additional references

concerning the spread of ideas include [5, 51, 21, 83, 120].

In this Chapter we study another form of Social Contagion by way of dissem-

ination of scientific knowledge. Moreover, the focus of this study is on the most

practical measuring unit of a scientific idea, namely; the published article [197, 198].

In 1964, Goffman applied epidemic theory to the spread of ideas and the growth

of scientific disciplines [90, 91, 92, 93]. By using aggregate longitudinal data about

research on mast cells [91] and Symbolic Logic [93], Goffman established that it

was possible to see growth and development in science as sequences of overlapping

contagion outbreaks -bulks in the number of contributors over time-[93].

Wagner-Döbler extended data sets corresponding to the number of publications

and active mathematicians in Symbolic Logic and tested Goffman’s predictions

about contagion outbreaks by applying economic cycles theory [204].

Social Contagion models have been validated against empirical data -based on
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publication counts-, in order to assess the growth of several branches of science

which include: research on anomalous water [23], liquid crystals [33], Fullerene

research [36], Theoretical High-Energy Physics [62], Geoscience [102], noble gas

compounds [103], biomedical research [127], and Semiconductor Physics [166].

The networks of scientific collaborations are inherent in the growth dynamics of

literature and have been analyzed by Newman (2001) [155, 157] and Price (1965)

[173].

This Chapter is organized as follows: in Section 5.1 we propose a Social Con-

tagion model applicable to the growth of scientific literature. Section 5.2 summa-

rizes a procedure to generate simulated longitudinal data. Next, in Section 5.3 we

present the parameter estimates obtained by implementing a GA (Chapter 4) in

order to fit simulated data. In Section 5.4 we propose to use the basic reproduc-

tive number estimates as measures of the role played by community structure in

scientific literature growth.

5.1 A model of Scientific Literature Growth

The successful invasion of Feynman diagrams -a technique for calculation in physics-

throughout the US/UK, Soviet and Japanese scientific communities during the

1940s-1950s has been analyzed as Social Contagion by Bettencourt et. al [26].

According to historical analyses [117, 118, 119], the diagrams indeed spread as a

contact process between physicists in the various communities. As observed by

Cintrón-A. et al. [61] “the spread of Feynman diagrams was greatly enhanced

in the US by the rapid expansion of postdoctoral fellowships at the Institute for
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Advance Study in Princeton. Under the influence of Feynman’s protégé Freeman

Dyson, postdocs practiced using the diagrams in intense collaborations, fanned out

to take jobs throughout the US and UK, and began teaching their own students.

In Tokyo Tomonaga’s close-knit group was especially receptive to the new tech-

niques, having developed similar ones on their own. Under postwar occupation

the Japanese University system expanded tenfold, with members of Tomonaga’s

group placed around the country, leading to a very efficient spread akin to that by

Princeton’s postdocs.”

In their analysis Bettencourt et al. [26], validated Social Contagion models

by estimating the effectiveness of the adoption of Feynman diagrams in the three

communities (US, Soviet Union, and Japan) and by finding values of transmission

parameters that reflect both intentional social organization and long lifetimes for

the idea -Feynman diagrams-.

Inspired by [26, 61] we propose the following model pertaining the spread of

“a scientific idea” within a technical community. Suppose the individuals in the

community are in one of the following social states: susceptible S(t), apprentice

E(t), or adopter I(t). Adopters are those members of the community who appear

as co-authors in publications where the “idea” is employed. In this way, one

can keep track of the number of adopters over time by collecting a sample of

bibliographic references where the “idea” is in use just as suggested by Goffman

[90, 91, 92, 93]. Since technical ideas require an apprenticeship time -analogous to

incubation- before acquiring proficiency, then it makes sense to consider a “latent”

class here referred to as apprentices. In fact, there are intentional structures that
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Table 5.1: State variables of system (5.1).

Variable Definition

S Susceptible

E Idea Apprentices

I Idea Adopters

N Total Population: N = S + E + I

facilitate and accelerate the maturation of knowledge, such as formalized doctoral

training and postdoctoral apprenticeship which unfold over significant periods of

time. The identification of susceptible is usually a difficult task, for simplicity

we consider in such state the remaining population whom is neither adopter nor

apprentice.

We propose the following nonlinear system to describe the transmission dy-

namics of knowledge relative to “a particular scientific idea”:

Ṡ = Λ− βS I
N
− µS

Ė = (1− q)βS I
N
− ρE I

N
− εE − µE

İ = qβS I
N

+ ρE I
N

+ εE − µI

(5.1)

In Tables 5.1 and 5.2 we summarize the definitions of the state variables and pa-

rameters of system (5.1), respectively. Observe that since we identify the adopters

I(t) by their collaborations manifested in published articles [26, 91], then system

(5.1) also serves to model growth dynamics of scientific literature.
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Table 5.2: Parameters of system (5.1).

Parameter Definition

Λ Recruitment rate

1/µ Average lifetime of the idea

ε Rate of individual progression to adoption

β Per-capita S-I contact rate

ρ Per-capita E-I contact rate

q S → I transition probability given contact with adopters

1− q S → E transition probability given contact with adopters

Susceptible individuals may leave this class as a result of contacts with adopters,

to either become adopters directly (qβSI/N) or to undergo apprenticeship

((1− q)βSI/N). On the other hand, apprentices may accelerate their progression

to adopters as a result of contacts with this class (ρEI/N), or by individual effort

(εE).

Following the notation of Chapter 4, then system (5.1) has state variable

x(t, θ) = (S(t, θ), E(t, θ), I(t, θ)) and parameter θ = (S(t0), E(t0), I(t0), β, ε, Λ, µ, q, ρ).

System (5.1) supports two type of equilibria, referred to as: idea extinction equi-

librium (Λ/µ, 0, 0), and adopters co-existence equilibrium (S∗, E∗, I∗) ∈ R3
+.

The basic reproductive number of system (5.1) is computed by applying the

next generation method [104, 67, 47, 203] and is given by

R0 =
β(qµ + ε)

µ(µ + ε)
(5.2)
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The total population size is denoted by N = S+E+I. Adding the equations in

(5.1), gives Ṅ = Λ−µN . Clearly, N → Λ/µ as t →∞. Therefore, the population

size reaches its “carrying capacity” Λ/µ[200, 201].

Observe that R0 does not depend on ρ. However, the number of co-existence

equilibria depends on the acceleration rate ρ. In fact, system (5.1) supports a

subcritical bifurcation at R0 = 1, as the value of ρ changes, implying that multiple

co-existence equilibria can occur whenever R0 < 1 [79, 190, 182].

Theorem 5.1.1. Define ρc = β(ε+µ)
β−µ

.

(a) If R0 > 1, then system (5.1) has exactly one co-existence equilibrium.

(b) If R0 < 1 and ρ > ρc, then for each ρ there exists a positive constant Rρ

such that system (5.1) has exactly two co-existence equilibria if R0 > Rρ;only

one co-existence equilibrium if R0 = Rρ; and no co-existence equilibrium if

R0 < Rρ.

(c) If R0 < 1 and ρ < ρc, then (5.1) has no co-existence equilibrium. If R0 < 1

and ρ = ρc, then (5.1) has exactly one co-existence equilibrium.

Proof. In view of the total population’s asymptotic constant size [200], let

S = N∗ − E − I, where N∗ = Λ/µ. Furthermore, reduce system (5.1) into the

following limiting system:


Ė = (1− q)β(N∗ − E − I) I

N∗ − ρE I
N∗ − (ε + µ)E

İ = qβ(N∗ − E − I) I
N∗ + ρE I

N∗ + εE − µI

(5.3)
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In order to find the co-existence equilibiria (E∗, I∗) with E∗ > 0 and I∗ > 0, we

solve Ė = 0 for E, let E(I) denote such solution:

E(I) =
(1− q)β(N∗ − I)I

((1− q)β + ρ)I + N∗(ε + µ)

Furthermore, we substitute E(I) in the second equation of system (5.3), and solve

İ = 0 for I. The roots of the following quadratic polynomial determine the co-

existence equilibria of system (5.1):

AI2 + BI + C (5.4)

where

A = −ρβ

B = N∗[ρ(β − µ)− µ(β(1− q) + (µ + ε)R0)]

C = (N∗)2µ(µ + ε)[R0 − 1]

(a) If R0 > 1 it follows that C > 0 which implies that (5.4) has only a positive

root.

(b) Since,

ρc =
β(ε + µ)

β − µ

Notice that ρ > ρc if and only if B > 0. Also, if R0 < 1 then C < 0. Furthermore,

suppose R0 < 1 and ρ > ρc, and define

Rρ =
−[ρ(β + µ) + µβ(1− q)] + 2

√
βµρ(ρ + β(1− q) + µ + ε)

µ(µ + ε)

such that B2 − 4AC >(= or <) 0 if R0 > (= or <) Rρ. It follows that system

(5.1) has two (one or none) co-existence equilibria if R0 > (= or <) Rρ.



59

stable extinction

unstable extinction

unstable co-existence

stable co-existence

Figure 5.1: A bifurcation diagram of co-existence and extinction equilibria I∗

versus basic reproductive numbers R0.

(c) If R0 < 1 and ρ < ρc, then C < 0 and B < 0. Therefore, (5.4) has no

positive roots and (5.1) has no co-existence equilibrium.

Figure 5.1 is a bifurcation diagram of system (5.1) using β as a bifurcation

parameter, it displays both the extinction and co-existence equilibria I∗ versus

the basic reproductive numbers R0 ≡ R0(β). The implications of the subcritical

bifurcation in system (5.1) are consistent with known features of the transmission

of scientific knowledge. The backward bifurcation in Theorem 5.1.1 and Figure 5.1

endorses a region of bi-stability where both extinction and co-existence equilibria

are locally stable therein. In Figure 5.1 the bi-stability region is approximately

0.84 < R0 < 1. The value ofR0 corresponding to disappearance of the co-existence

equilibria -approximately 0.84 in Figure 5.1- is called the turning point [190, 46, 79].

The bi-stability implies that the elimination of the adopters population is very
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1
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2.5 I(t0)=0.213
I(t0)=0.134
I(t0)=0.683
I(t0)=0.839
I(t0)=1.11

Figure 5.2: Several time series solutions of adopters I(t) varying the initial condi-

tions I(t0) with fixed parameter values. Solutions illustrate bi-stability of system

(5.1); as some initial conditions facilitate co-existence and others extinction.
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arduous, in the sense that one can only cause the extinction of “the idea” by

reducing R0 below the turning point (where the bifurcation ends). Moreover, it

is readily seen in Figure 5.2 that a small number of individuals in the adopters

class (founders of “the idea”) may successfully invade the susceptible population.

In view of this hysteresis effect [190] it becomes extremely difficult to eliminate an

established population of adopters. In the context of scientific literature growth

or diffusion of a scientific idea, the bi-stability determines a feature that we call

Social Contagion robustness.

5.2 Simulated Longitudinal Data

Studies by Bettencourt et al. [26] and Kaiser [117] are suggestive of the role played

by community structure in the contagion of a scientific idea -Feynman diagrams-

across several communities in Theoretical Physics.

We use Network Models 2 and 4 in order to generate simulated longitudinal

data corresponding to observations of I(t; θ) in system (5.1).

In Table 5.3 we outline a network scientific literature growth model. Nodes of

random graphs (generated with either Network Model 2 or 4) may be in one of

three social states, namely: susceptible, apprentice, or adopter. The transition

probabilities are density dependent functions of neighboring nodes in the adopter

state. For instance, suppose that Ii denotes the number of i-neighbors which are in

state adopter, then node i switches from susceptible into adopter with probability

1 − exp(−q̃β̃Ii). The model parameters (β̃, ε̃, µ̃, q̃, ρ̃) have the same qualitative

meaning as those presented in Table 5.2. In order to account for the recruitment
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Table 5.3: Network Literature Growth Model. Ii denotes the number of adopter

neighbors of node i.

Transition Probability of Transition

node i changes from

susceptible into apprentice 1− exp(−(1− q̃)β̃Ii)

node i changes from

susceptible into adopter 1− exp(−q̃β̃Ii)

node i changes from

apprentice into adopter 1− exp(−ρ̃Ii − ε̃)

node i changes from

apprentice into susceptible 1− exp(−µ̃)

node i changes from

adopter into susceptible 1− exp(−µ̃)
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and exits (Λ and µ in system (5.1)) we opt for keeping the number of nodes

fixed and instead let nodes to switch from adopter and apprentice into susceptible.

Discrete-time steps of length one (generations of adopters) are assumed.

In order to model various community structures we set pWS = 0.001, pWS = 0.1,

pWS = 1, in Network Model 2, and pLL = 0 in Network Model 4. In the case of the

Watts-Strogatz graphs (Network Model 2) we consider “communities” before and

after the phase transition displayed in Figure 3.3 [207]. As observed by Lloyd et

al. [134], the main difference between regular lattices and random graphs (Erdös-

Renyi) is that the mixing is purely local in regular lattices (pWS ↓ 0) -as nodes are

only connected to their nearest neighbors- whereas in Erdös-Renyi graphs (pWS ↑

1) the mixing is global in nature -connections are made with no bias for the spatial

location of nodes- [134]. On the other hand, the graphs obtained in Network Model

4 as pLL ↓ 0 are reminiscent of complex heterogeneous communities, in the sense

of diverging connectivity fluctuations in the limit of a very large number of nodes

[148, 132].

There were two types of data generated for each fixed value of pWS and pLL,

namely: (i) data resulting from a single realization, and (ii) data resulting from the

average of realizations of the network literature growth model outlined in Table

5.3. The simulated longitudinal data sets are displayed in Figures 5.3 and 5.4

5.3 Parameter Estimation

We implemented an version of the Algorithm 3 and used simulated longitudinal

data in order to estimate the parameter θ = (S(t0), E(t0), I(t0), β, ε, Λ, µ, q, ρ) of
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Figure 5.3: Simulated data from a single realization in various “communities”.
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Figure 5.4: Simulated longitudinal data resulting from the average of realizations

in several random graphs.
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Table 5.4: Baseline ranges.

Parameter Baseline Range Unit

S(t0) [0, 5000] people

E(t0) [0, 100] people

I(t0) [0, 200] people

β [0, 12] 1/year

ε [0.2, 6] 1/year

Λ [0, 50] people/year

µ [0.025, 12] 1/year

q [0, 1] 1

ρ [0, 12] 1/year

system (5.1). We fitted cumulative numbers of adopters. More precisely, the

objective function employed in the optimization is of the following type:

J(θ) =
n̄∑

i=1

[
log(Zθ

i )− log(Ỹi)
]2

(5.5)

with a sample of longitudinal data (Y1, . . . , Yn̄). Moreover, in (5.5) we set Ỹi =∑i
k=1 Yk, and Zθ

i =
∑i

j=1 I(tj, θ).

In Table 5.4 we display the box constraints used in the estimation. We used

the same box constraints as those employed in [26].

The estimates corresponding to the data set of a single realization in a random

graph with pWS = 0.001 are presented in Table 5.5. The second column in Table

5.5 displays θ̂, the solution to (4.3), where J(θ) is defined in (5.5). Estimates of
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Table 5.5: Parameter estimates corresponding to a single realization in a “commu-

nity” with pWS = 0.001.

Parameter θ Best Fit θ̂ Mean Std

S(t0) 3799 4200 415.2

E(t0) 30.24 30.81 1.613

I(t0) 4.824 5.562 6.021

β 0.264 0.2771 0.0795

ε 0.2018 0.2275 0.1541

Λ 0.8897 1.683 3.202

µ 0.1694 0.18 0.05749

q 0.2088 0.1901 0.03382

ρ 1.844 1.993 0.2721

R0(θ̂) 0.99526 0.97857 0.038056
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Figure 5.5: Numerical solutions (solid line) using the optimal fit parameters and

simulated data (squares).

the weighted mean and standard deviation -by using formulas (4.8) and (4.9)- are

presented in the third and fourth columns of Table 5.5, respectively.

The optimal parameter θ̂ (Table 5.5) falls within the bi-stability region of sys-

tem (5.1). In fact, by plugging θ̂ into the Theorem 5.1.1 ’s formulas of ρc, Rρ and

R0, we obtain ρ̂c ≡ ρc(θ̂) = 1.037, R̂ρ ≡ Rρ(θ̂) = 0.9487, and R̂0 ≡ R0(θ̂) =

0.9953. Therefore, R̂0 > R̂ρ and ρ̂c < ρ̂ which imply -by Theorem 5.1.1- that

there exist both locally stable extinction and co-existence equilibria. In Figure

5.5(b) we display the numerical solution I(t; θ̂) integrated forward in time t (with

t ∈ [45, 600]). The locally stable co-existence equilibrium is approximately 0.8.

In Panel (a) of Figure 5.5, both the “optimal numerical solution” I(t, θ̂) and the

simulated longitudinal data are displayed. Whereas in Panel (c) their cumulative

numbers as functions of time are shown. The optimization was performed by fitting
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Table 5.6: Parameter estimates corresponding to the average of realizations in a

random graph with pWS = 0.001.

Parameter θ Best Fit θ̂ Mean Std

S(t0) 1536 1639 436.1

E(t0) 4.864 7.239 12.26

I(t0) 4.955 9.461 21.16

β 0.6297 0.7571 0.8293

ε 3.121 2.96 0.4899

Λ 30.69 29.64 5.164

µ 0.5425 0.7239 1.083

q 0.01598 0.03975 0.1289

ρ 7.525 7.466 0.8476

R0(θ̂) 0.99167 0.96865 0.10922

cumulative numbers of adopters as defined in (5.5).

The estimates obtained by fitting the average of realizations -in simulated lon-

gitudinal data of a community modeled by pWS = 0.001- are shown in Table 5.6. In

Figure 5.6 Panel (c), the cumulative number of adopters versus time is displayed,

for both the “optimal numerical solution” I(t, θ̂) and the simulated data. Fig-

ure 5.6(b) shows the numerical solution I(t, θ̂) where t ∈ [20, 600] and adopters’

extinction is clearly depicted. In fact, these estimates θ̂ once again fall within

the bi-stability region of system (5.1). In this case, we have ρ̂c = 26.45, and

R̂0 = 0.9917. Hence, R̂0 < 1 with ρ̂ < ρ̂c, and by applying Theorem 5.1.1 there is
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Figure 5.6: Numerical solutions (solid line) using θ̂ and longitudinal data (squares).

no co-existence equilibrium.

The fact that solutions go extinct (Figure 5.6(b)) or simply saturate at low

levels of co-existence (Figure 5.5(b)) reflect that those communities -modeled by

pWS = 0.001- have limited aptitudes for the social contagion of the scientific idea.

We observe similar trends in Chapter 3, Figures 3.6(a) and 3.8(a), there in the

context of rumor spreading. In addition, Lloyd et.al [134] point out that mixing is

in nature localized for those “communities” with pWS ↓ 0, therefore is not surprising

that for some transmission parameters θ the “scientific idea” simply dies out.

In Table 5.7 the estimates corresponding to a “community” with pWS = 1

are displayed. Whereas, Figure 5.7 shows optimal numerical solutions I(t, θ̂) and

simulated longitudinal data. In this case, R̂0 = 28.013 > 1, implying that the

optimal parameter θ̂ falls in the region where the co-existence equilibrium is locally

stable and the extinction equilibrium is unstable (Theorem 5.1.1 and Figure 5.1).
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Table 5.7: Parameter estimates resulting from fitting a single realization in a

“community” modeled by pWS = 1.

Parameter θ Best Fit θ̂ Mean Std

S(t0) 211.6 229.1 20.08

E(t0) 0.06701 2.911 12.48

I(t0) 4.995 5.029 1.311

β 5.096 4.439 1.334

ε 0.227 1.153 1.386

Λ 31.15 20.96 7.292

µ 0.1201 0.08295 0.03344

q 0.01872 0.1019 0.1642

ρ 9.328 5.958 3.085

R0(θ̂) 28.013 46.205 14.247
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Figure 5.7: Numerical solutions using θ̂ (solid line) and simulated data (squares).

In contrast to the previous estimates (Tables 5.5 and 5.6), in this case θ̂ seems

to reflect a fervid social contagion of “the scientific idea” within the community

modeled by pWS = 1.

In order to comment on which simulated data set was best retrieved by the

genetic algorithm (GA), we compare the goodness of fit -as measured by J(θ̂)-

over all samples of observations. Tables 5.8 and 5.9 display the goodness of fit

of simulated longitudinal data sets corresponding to a single realization and the

average of realizations, respectively.

In all the estimations (optmizations (4.3) solved via GA’s) we employed a ho-

mogeneous mixing model given by (5.1). The underlying assumption of homoge-

neously mixing populations is reflected in contagion terms like βSI/N [107]. It

means that individuals in the total population -of size N - may engage in a social

contact homogeneously or [uniformly] at random. In other words, suppose that in



72

Table 5.8: Fitting one sigle realization

Network Model Goodness of Fit J(θ̂)

Small-world, pWS = 0.001 8.14× 10−4

Small-world, pWS = 0.1 3.36× 10−4

Small-world, pWS = 1 5.39× 10−5

Scale-Free, pLL = 0 8.83× 10−5

Table 5.9: Fitting average of realizations

Network Model Goodness of Fit J(θ̂)

Small-world, pWS = 0.001 5.76× 10−5

Small-world, pWS = 0.1 2.02× 10−5

Small-world, pWS = 1 4.04× 10−6

Scale-Free, pLL = 0 1.53× 10−6

a total population N = S + E + I any individual has β0 contacts with any other

individual, in such a way that β0I/N denotes the fraction of those contacts spent

with individuals in the I-class (the chance to meet with them is I/N), and Sβ0I/N

are total number of contacts between individuals in classes S and I.

The differential equation model (5.1) is an average qualitative description of

the social contagion dynamics underlying scientific literature growth. As such it

cannot describe transient dynamics like the stochastic fluctuations clearly depicted

for single-realization data sets -Figure 5.3-.
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The communities with structure modeled by pWS ↑ 1 are reminiscent of homo-

geneously mixing populations [148, 157]. We would then expect that model (5.1)

approximates best -in the sense of the smallest J(θ̂)- the data sets corresponding

to pWS ↑ 1. Indeed, for the single-realization simulated longitudinal data, we ob-

serve that the best goodness of fit is attained at pWS = 1. On the other hand,

it is surprising that in the case of average-realization simulated data, the best

goodness of fit takes place at pLL = 0 -data corresponding to scale-free structured

communities-.

We acknowledge that the GA estimation method implemented in this Chapter

is challenged by making an adequate choice of the dynamical system that models

the longitudinal observations to be fitted.

5.4 Quantifying Markers of Community Structure

In the context of epidemiological models Hethcote defines the basic reproductive

number by [107]: “the average number of secondary infections produced when

one infected individual is introduced into a host population where everyone is

susceptible”.

We claim that the estimates R̂0 show the effect of the community structure

in the social contagion of “the scientific idea”. In Table 5.10 the estimates R̂0

for all simulated communities are displayed. Erdös-Renyi and scale-free structured

communities are known to enhance contagion [148]. In the case of the former

(pWS = 1), the mixing is global -due the low average distance between any pair

of nodes, Figure 3.3- [134], leading contagion to take place rather fast through
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Table 5.10: Basic reproductive numbers as markers of community structure.

Data Sets Best Fit R̂0 Mean(R0) Std(R0)

Single Realization

pWS = 0.001 0.995 0.979 0.038

pWS = 0.1 7.128 7.125 1.073

pWS = 1 28.013 46.205 14.247

pLL = 0 30.776 26.118 4.180

Average of Realizations

pWS = 0.001 0.992 0.969 0.109

pWS = 0.1 4.674 4.601 0.775

pWS = 1 26.327 24.392 2.054

pLL = 0 27.748 27.446 0.508

“natural shortcuts” in the community. Whereas in the case of scale-free graphs

(pLL = 0), the enhancement is a result of sharp variations in the nodes connectiv-

ities [148].

In Table 5.10 we observe a consistent increase in R̂0 across the random graphs

modeling several community structures. In fact, the low values in R̂0 correspond

to less percolating communities and the high values to more cohesive structures.

Since the GA estimation retrieves distributions of R0 it enables a statistical

comparison across all the communities. We propose to use the distributions of R0

as a measure of the role played by the network topology in the social contagion of

“the scientific idea” and this sense such distributions are markers of community
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Figure 5.8: Fitting a single realization.

structure.

It is seen in Table 5.10 that for single-realization data, the Erdös-Renyi struc-

tured communities -pWS = 1- on average attain highest values of R0 which are

also fairly dispersed. Whereas, for realization-aveage data, the basic reproductive

number is on average highest in scale-free structured communities yet the samples

are tightly accumulated around the mean.

Figures 5.8 and 5.9 display the distributions of R0 for pWS = 1 and pLL = 0.

In summary, we conveyed the growth of scientific literature by means of Social

Contagion. The dissemination of a scientific idea amongst a technical community

was modeled as a contact process. In the well-mixed limit, we argued that acceler-

ation to adoption of the idea -as a function of the contacts between apprentices and

adopters- indeed drives subcritical (backward) bifurcations. This novel qualitative

result implies that it is nearly impossible to eradicate an “established” population
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of adopters, since a backward bifurcation is a signature of an explosive growth

within a bi-stability region. GA were applied to simulated longitudinal data in or-

der illustrate the role of community structure in literature growth. Distributions of

basic reproductive numbers R0 -retrieved by the GA- were used to compare trans-

mission across all simulated communities. Erdös-Renyi random graphs exhibited

the highest values of R0 with fairly dispersed distributions.



Chapter 6

Estimating the Reproductive Numbers

of Influenza A (H3N2) in the U.S.

during 1997-2005
The transmission of viruses in a population of hosts may be quantified by estimates

of the dimensionless quantity referred to as the basic reproductive number. In fact,

assessments of public health policies -including intervention strategies- have often

used the reproductive number as the unit of analysis; by means of quantifying how

distinct courses of action induce reductions in such unit [59, 105].

Influenza viruses cause -in the United States alone- every year more than

200,000 hospitalizations and approximately 36,000 deaths [52].

Despite efforts in Theoretical Epidemiology to address the mechanisms under-

lying the persistence of co-circulating viruses along with surveillance programs

sponsored by the World Health Organization and the Centers for Diseases Con-

trol and Prevention (CDC) [53], there exists a lack of basic reproductive number

estimates corresponding to seasonal epidemics of influenza (see [94] page 11147).

In this Chapter, we present estimates on the reproductive numbers of seasonal

influenza -type A, subtype H3N2- epidemics in the United States during 1997-2005.

Such estimations result from implementing genetic algorithms (GA) in order to fit

incidence data -collected by the CDC-. This Chapter is organized as follows:

in Section 6.1 we summarize various facts about the epidemiology of influenza

77



78

viruses. In Section 6.2 some of the modeling efforts, pertaining the transmission

dynamics of influenza, are recalled. An overview of definitions and estimation

methods corresponding to reproductive numbers is presented in Section 6.3. Next,

in Section 6.4 we explain how the incidence data sets-utilized for the parameter

estimations in this Chapter- were obtained. The estimated distributions of basic

reproductive numbers are presented in Section 6.5. A discussion of the results can

be found in Section 6.7. Section 6.6 describes some challenges in GA’s parameter

estimations.

6.1 Epidemiology of Influenza A (H3N2)

In humans, influenza viruses attack mostly the upper respiratory tract: the nose,

throat and bronchi. The infection is characterized by sudden onset of high fever,

myalgia, headache and severe malaise, non-productive cough, sore throat, and

rhinitis [210]. Influenza viruses are passed from person to person through air by

droplets and small particles excreted when infected individuals cough or sneeze

[210, 52]. An individual whom acquires the influenza virus undergoes incubation

for about one to three days before becoming infectious (capable of transmitting

it to others) [74, 210]. Ability to infect others may take place one day before

symptoms develop and up to five days after becoming sick. The infectious period

usually lasts three to six days and the span of the disease typically extends for two

to seven days [74, 52].

The influenza virus belongs to the Orthomyxoviridae family and is a negative-

strand RNA virus [208]. There exist three main types of influenza: A, B, and C,
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and each has several subtypes. The various subtypes are determined by substantial

differences in the virus surface proteins: hemagglutinin (HA) and neuraminidase

(NA). For instance, three subtypes of influenza type A are: H1N1, H2N2, and

H3N2. Subtypes include strain variants, which as result of gradual mutations to

the HA gene (antigenic drift), are partially serologically cross-reactive [208]. There

also exist major reassortment events known as antigenic shift; such mutated strains

are highly pathogenic -ability to successfully transfer from one host to another- and

spread globally leading to the so called pandemic influenza outbreaks [159]. Indeed,

the pandemics result from either the emergence of new subtypes (e.g. 1918-H1N1

pandemic [164]), or from high population susceptibility to a re-emergening subtype

(e.g. 1977-H1N1/H3N2 pandemic [164]).

Due to error-prone viral RNA polymerase activity, the influenza virus HA pro-

tein is subject to a very high rate of mutation [208, 80]. In addition, since both

proteins HA and NA are the main targets of the host immune system, then selec-

tion for amino acid substitutions is in part driven by immune pressure [80]. In a

typical host, an influenza infection brings lasting immunity to the infecting strain,

however most people are susceptible to re-infection by a new drift variant within

a few years. Indeed, Castillo-Chávez et al. [49] explained that one of the observed

patterns associated with influenza consists in annual epidemics between pandemics

involving successive drift variants of previous pandemic subtypes. It is therefore

of great interest to determine how such patterns are influenced by: (i) antigenic

drift variants [80, 111, 170], (ii) community structure [137, 49], (iii) weather [199],

and (iv) geography [31, 138, 81].
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Figure 6.1: Clinically confirmed cases of influenza A (H3N2) during 2001-2005 [53].

In this Chapter we focus on strains -drift variants- of influenza A (H3N2). Fig-

ure 6.1 displays the number of influenza A (H3N2) isolates during 2001 through

2005 versus time -in weeks-, these samples were reported by laboratories collab-

orating with the World Health Organization and the National Respiratory and

Enteric Virus Surveillance System [53].
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6.2 Theoretical Epidemiology of Influenza

There is a growing theoretical interest in the ecology and evolution of influenza [49,

9, 101, 131, 163, 95]. These contributions have established a theoretical ground to

understand extinction and co-existence in an environment of strains -drift variants-

competition [37], mediated by partial cross-immunity (relative reduction in suscep-

tibility due to previous exposure to “antigenically similar strains”).

Aiming to extend contributions by Dietz [69] and Castillo-Chávez et al. [49],

Nuño et al. [163] proved that host-isolation and cross-immunity induce sustained

oscillations -periodic or seasonal epidemic outbreaks- in scenarios where two in-

fluenza strains undergo various levels of competition. Moreover, such scenarios may

support sub-threshold co-existence even when the isolation reproductive number

of one strain is below 1 [163].

Andreasen et al. [10] modeled multi-strain evolution along a straight-line path

which enabled estimates of drift rates. Gupta et al. [101] assumed that (i) cross-

immunity influences only transmission and (ii) simple allele structures; which lead

to tractable analysis of co-existence in multi-strain models. Lin et al. [131] and

Andreasen et al. [9] have analyzed complex models with moderate numbers of

strains by employing symmetries. Gog and Grenfell [95] proposed models with

transmission probabilities as functions of (i) polarized immunity and (ii) cross-

immunity; and found that strains have a tendency to “cluster” with dominance

of a single cluster or clusters co-existence relative to the length of the infectious

period.

A limitation in several of these theoretical studies arises in the estimation of
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their parameters and more precisely, in model validation with empirical data. Yet,

accomplishments have been attained in this regard. Cauchemez et al. [50] and

Longini et al. [137] estimated mean infectious periods, intra-household risk of

transmission (secondary attack rates), and community risk of transmission (com-

munity probability of infection), based on household longitudinal data sets. In-

spired by the metapopulation framework and estimations developed by Rvachev

and Longini [181], Hyman and LaForce [113] employed airline traffic (across cities

in the US) and mortality data for model validation. Bonabeau et al. [31] utilized

weekly reports -spanning nine years- obtained from a network of general practition-

ers in France, in order to analyze spatio-temporal dynamics of influenza epidemics.

In another study, Smith et al. [188], focused in the influenza vaccine efficacy.

They proposed the antigenic distance hypothesis (variation in repeated vaccine

efficacy is due to differences in antigenic distances among vaccine strains and be-

tween the vaccine strains and the epidemic strain in each outbreak) and tested it

by validating a large-scale computer model with observed data from Hoskins and

Keitel studies (see [188] and references therein). Further validation of the antigenic

distance hypothesis has been revealed by Nuno et al. [165]. By employing an un-

certainty analysis on the ability of a strain to invade and co-exist with a resident

strain, they showed that cross-immunity can increase phenotypic diversity, that is,

it can increase the likelihood of strain co-existence (within the same subtype) even

in the case when the invading strains are less fit.
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6.3 Basic Reproductive Numbers R0

Thieme (see [201], page 324) recalls the following limerick by Sir R. May:

“The deeper understanding Faust sought,

Could not from the Devil be bought,

But now we are told,

by theorists bold,

All we need to know is R0”.

The basic reproductive number R0 is defined as: the average number of secondary

cases yielded by a typical infective (assumed capable of transmitting the infectious

agent) during his/her lifetime as infected when introduced into a totally susceptible

population [8, 47, 104, 203].

Diekmann et al. [67] proposed the so called “next generation method” in or-

der to compute formulas of the basic reproductive number R0 in epidemiological

models; by defining it as the spectral radius of the next generation operator.

Suppose that a population is divided into several groups according to various

levels of heterogeneity, in such a way that the epidemiological model is given by:

U ′ = f(U, V,W )

V ′ = g(U, V,W )

W ′ = h(U, V,W )

(6.1)

where U ∈ Rr, V ∈ Rs, W ∈ Rn, r, s, n ≥ 0, and h(U, 0, 0) = 0. The entries of U

denote the non-infected individuals including susceptible and recovered. The en-

tries of V denote the number of infected people who do not transmit the infectious
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agent -several latent or incubation stages-. The entries of W denote the number

of infected individuals capable of transmitting the infectious agent (infectious and

non-quarentined individuals).

Let X0 = (U∗, 0, 0) ∈ Rr+s+n denote the disease-free equilibrium:

f(U∗, 0, 0) = g(U∗, 0, 0) = h(U∗, 0, 0) = 0

Assume that g(U∗, V, W ) = 0 implicitly determines a function V = φ(U∗, V ).

Define A = ∂W h(U∗, φ(U∗, 0), 0) and further assume that A can be written in

the form A = M − D, with Mij ≥ 0,∀i, j and D = diag(d11, . . . , dnn) such

that dii > 0,∀i. Let ρ(Z) denote the spectral radius of a matrix Z. The basic

reproductive number of system (6.1) is defined by

R0 = ρ(MD−1) (6.2)

An application of the next generation method is given by computing the basic

reproductive number of system (5.1). In such case,

∂W h(U∗, φ(U∗, 0), 0) = qβ +
ε(1− q)β

ε + µ
− µ

Therefore, M = qβ + ε(1−q)β
ε+µ

, D = µ, and

R0 = ρ(MD−1) =
β(qµ + ε)

µ(ε + µ)
(6.3)

Additional examples of basic reproductive numbers are provided by Anderson

and May in [8]. Heesterbeek offers an excellent survey in the history of R0 in

[104]. Castillo-Chávez et al. [47] summarize a collection of applications of the

next generation method and convey its role in global stability. van den Driessche
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and Watmough [203] address generalizations in computations of R0 formulas in

[203]. Hefferman et al. [105] summarize definitions and estimations of reproductive

numbers in several scenarios.

The estimation of the basic reproductive numberR0 from epidemiological data,

is a different task from computing its formula -as a function of the model param-

eters as it reads in (6.3)-. Below we recall various ways to estimate R0 from

empirical data.

R0 Estimate using average age of infection. Suppose the data corresponds

to a scenario where the endemic equilibrium -infective co-exist with other classes-

has been attained. The basic reproductive number may be estimated by R0 ≈

1 + L/A, where L denotes the mean lifetime in the population -or life expectancy-

and A denotes the mean age at infection -average length of the infectious period-

[34, 105].

R0 Estimate using the final size equation. Recall from equation (2.5) that

s∞ = 1− r∞, therefore the transcendental equation for the final epidemic size may

be re-written as; s∞ = exp(−R0(1− s∞)). Hence, the basic reproductive number

can be estimated by R0 = − ln(s∞)/(1− s∞), whenever the epidemiological data

allows estimations for s∞- the fraction of the population that did not become

infected-[107, 105].

R0 Estimate using intrinsic growth rate. Consider, i′ = βsi− γi, then by

linearizing in the infective invasion limit -i.e. as (s, i) → (1, 0)-, one obtains:

∂i(i
′)

∣∣∣∣
(s,i)→(1,0)

= β − γ
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Let R0 = β/γ and observe that R0 > 1 (< 1) whenever β − γ > 0 (< 0). An

exponential growth model -also known as Malthus’ model [35]- such as x′ = ax,

with a = R0− 1 ( i.e. x(t) = x(t0) exp(−(R0− 1)t)), may serve to estimate R0 by

fitting longitudinal epidemic data to x(t) [105].

R0 Estimate for vector-borne diseases. Woolhouse et al. [212] estimated

the basic reproductive number in scenarios where transmission is carried out by

biting arthropods -vectors-. They assumed that individual vectors bite in host

household i (where i = 1, . . . ,m, and m is the number of households) at a rate

proportional to the number of vectors sampled in household i, in such way that:

R0 ∝
m∑

i=1

ν2
i

hi

where νi is the proportion of vectors sampled in household i and hi is the pro-

portion of hosts in household i. They used this kind of estimations to quantify

heterogeneities in the transmission of infectious agents, and proposed a hypothe-

sis -supported by their R0 estimates- called the 20/80 rule. This rule establishes

that 20% of the host population contributes at least 80% of the net transmission

potential [212].

R0 Estimate using optimal parameter θ̂ from fitting longitudinal ob-

servations to an epidemiological model. Consider an epidemiological model

defined by system (4.1). Define a formula for R0 ≡ R0(θ) by applying the next

generation method to system (4.1). Suppose there are observations available and

solve (4.3) in order to find θ̂. An estimate of the basic reproductive number is

given by R̂0 = R0(θ̂) [57, 59]. This is the scheme used for the estimations of R0

presented in this Chapter.
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Table 6.1: Basic reproductive number R0 estimates for Influenza A.

Estimate Event Source

1.09 Seasonal geographic spread, France Bonabeau et al.[31]

1.49 1918 Pandemic, Switzerland Chowell et al. [59]

1.732 Seasonal geographic spread, France Bonabeau et al.[31]

1.8 1918 Pandemic, US/UK Ferguson et al. [81]

2 1918 Pandemic, US Mills et al. [146]

3.75 1918 Pandemic, Switzerland Chowell et al. [59]

3.77 1978 Boarding school, UK Murray [152]

3.9 1918 Pandemic, US Mills et al. [146]

8.30 1978 Boarding school, UK Gog et al.[94]
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Table 6.2: Influenza A’s R0 baseline values and suitable ranges.

Baseline Value Event Source

R0 = 1.02 Seasonal epidemics, US Hyman et al. [113]

R0 = 1.39 “H5N1 Pandemic” Gani et al. [87]

Suitable Range

1 < R0 < 3.6 “H5N1 Pandemic”, Asia Ferguson et al. [81]

1.1 < R0 < 2.4 “H5N1 Pandemic”, Asia Longini et al. [138]

2 < R0 < 3 Seasonal epidemics, France Bonabeau et al.[31]

0 < R0 < 21 1978 Boarding school, UK Fraser et al. [82]

0.17 < R0 < 25 Risk of indoor infection Liao et al. [130]

4 < R0 < 16 Seasonal epidemics Dushoff et al. [73]

11.5 < R0 < 22.7 Influenza deaths, UK Gog et al. [94]
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Estimates of the basic reproductive number may be considered as quantifica-

tions of the transmission potential of a particular infectious agent [212, 135, 105].

In fact, such estimates enable risk assessment of an emerging disease epidemic [59,

144, 136] as well as assessment of potential control strategies [138, 81, 87, 82, 59].

Indeed, once suitable ranges for R0 have been estimated, then simulation-based

studies can be implemented in order to determine which control measures and at

what magnitude (e.g sensitivity to some parameters) would be most effective in

reducing R0[105, 59].

In the case of influenza epidemics, most of the R0 estimates found in the

literature, to the best of our knowledge, correspond to influenza pandemics data.

There is a handful of estimates corresponding to seasonal influenza epidemics. In

Tables 6.1 and 6.2 we summarize various influenza R0’s estimates, baseline values,

and suitable ranges. There seems to be a wide range of plausible values for the

influenza basic reproductive numbers, as they are reported to take values between

1 and 25 (see Table 6.2 and references therein).

The present study is concerned with the basic reproductive numbers R0 associ-

ated to influenza seasonal patterns of spread. In such context -seasonality- Hyman

and LaForce [113] set R0 = 1.02 as a baseline value. Also, Bonabeau et al. [31] by

using seasonal incidence data from several regions in France estimated R0 = 1.09,

R0 = 1.732, R0 = 2, and R0 = 3. However, Dushoff et al. [73] set a suitable range

by R0 ∈ [4, 16].

In this Chapter, we intend to provide additional estimates of influenza’s R0 by

applying genetic algorithms (Chapter 4) to estimate parameters from epidemiolog-
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ical data collected by the Centers for Disease Control and Prevention [53].

6.4 Empirical Longitudinal Incidence Data

Influenza surveillance programs are implemented around world by health author-

ities through every epidemic season. Some of these programs compile reports of

epidemiological activity. A list of these surveillance sources includes: (i) Sentinelles

Network and Sentiweb (France) [186], (ii) World Health Organization (WHO)

Global Atlas of Infectious Diseases [209], (iii) WHO Global Influenza Programme

[211], (iv) Public Health Agency of Canada; Flu Watch (Canada) [174], (v) Euro-

pean Influenza Surveillance Scheme [76], and (vi) Centers for Disease Control and

Prevention (United States) [53].

The data utilized in the present study was accessed through reports on influenza

activity in the United States (U.S.) posted by the Centers of Disease Control and

Prevention (CDC) [53]. The Influenza Branch at CDC collects and reports in-

formation on influenza activity in the U.S. each week from October through May

-influenza season-. The Influenza Surveillance System in the U.S. -lead by the

CDC- consists of reports from more than 120 laboratories, 2,000 sentinel health

care providers, vital statistics offices in 122 cities, and influenza surveillance coor-

dinators and state epidemiologists from all 50 state health departments. Despite

the powerful ensemble of this surveillance system, the CDC makes the following

disclaimer [53]: “The reported information answers the questions of where, when,

and what influenza viruses are circulating. It can be used to determine if influenza

activity is increasing or decreasing, but cannot be used to ascertain how many
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people have become ill with influenza during the influenza season.”

We gathered -from the CDC reports- information concerning: (i) number of

isolates, and (ii) antigenic characterization of samples. The counts on the number

of isolates per week were submitted to the CDC by 75 laboratories collaborating

with the U.S. World Health Organization and 50 laboratories cooperating with the

National Respiratory and Enteric Virus Surveillance System [53]. These labora-

tories reported the total number of respiratory specimens tested, and the number

of samples testing positive for influenza types A and B. Also, some laboratories

specified the influenza A subtype (H1N1 or H3N2) of the viruses they had isolated.

Some the influenza viruses collected by laboratories were sent to the CDC for fur-

ther testing including antigenic characterization. Such scrutiny enables CDC to

determine the percentages of circulating viruses that are “antigenically similar”

to a particular strain -common ancestor-. For instance the 2004-2005 antigenic

characterization report reads [53]: “CDC has antigenically characterized 1,075 in-

fluenza viruses collected by U.S. laboratories since October 1, 2004: 11 influenza

A(H1N1) viruses, 709 influenza A(H3N2) viruses, and 355 influenza B viruses. The

hemagglutinin proteins of the influenza A(H1N1) viruses were similar antigenically

to the hemagglutinin of the vaccine strain A/New Caledonia/20/99. One hundred

fifty-six (22%) of the 709 influenza A(H3N2) isolates were characterized as antigeni-

cally similar to A/Wyoming/3/2003, which is the A/Fujian/411/2002-like (H3N2)

component of the 2004-05 influenza vaccine, and 553 (78%) were characterized as

A/California/7/2004-like.”

In Table 6.3 there is a summary of the percentages of strains prevalence with
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Table 6.3: Most prevalent influenza strains per season according to antigenic char-

acterization by the CDC [53]. Similarities of the samples’ hemagglutinin proteins

enable frequency counts of circulating strains. For instance, in the season 1999-

2000, approximately 97% of the samples shared similarities -in the HA proteins-

with strain A/Sydney/05/97 (H3N2). By convention, strains are classified by their

type, place where the isolation occurred, number of isolates, year of isolation and

subtype, for instance: A/California/7/2004 (H3N2) denotes a type A strain iso-

lated in California in 2004 among other 7 isolates and belonging to the subtype

H3N2 [164].

Season Strain Name “Antigenic Frequency” in Sample

1999-2000 A/Sydney/05/97 (H3N2) 97%

2001-2002 A/Panama/2007/99 (H3N2) 100%

2002-2003 A/Panama/2007/99 (H3N2) 85%

2003-2004 A/Fujian/411/2002 (H3N2) 88.8%

2004-2005 A/California/7/2004 (H3N2) 78%
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respect to the antigenic characterization. These percentages correspond influenza

A (H3N2) strains from seven seasons (all from 1997 through 2005, excluding 2000-

2001).

Each data set used in the estimations presented in Section 6.5, corresponds to

a season and was obtained by: (i) dividing the time-series of A (H3N2) isolates by

the total number of isolates of that season, and (ii) scaling the fractions generated

in (i) by the percentages of circulating strains summarized in Table 6.3. In this

way, each newly scaled data set is intended to represent densities of reported cases

with “the most prevalent” strain per season. Figure 6.2 displays all scaled data

sets.

6.5 Estimation of Influenza A (H3N2) R0 in the U.S. be-

tween 1997-2005

Analysis of sequential outbreaks of influenza A (H3N2) is carried out by estimating

distributions of the basic reproductive numbers corresponding to various prevalent

strains over seven seasons. The empirical data was gathered from CDC’s archives

[53], and genetic algorithms -versions of Algorithm 3 in Section 4.4- were imple-

mented in order to find parameter estimates with their respective measures of

uncertainty.

For each outbreak, the following model -introduced in Chapter 2- was consid-

ered:
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Figure 6.2: Scaled density of reported cases with dominant influenza A (H3N2)

strains -Table 6.3-, versus time in weeks. Influenza seasons span from October

through May every year [53].
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

s′ = −βsi

i′ = βsi− γi

r′ = γi

(6.4)

where 1 = s + i + r. Following the notation of Chapter 4, then system (6.4) has

parameter θ = (s(t0), i(t0), β, γ). The basic reproductive number is derived by

observing that the growth (or decay) of the proportion of infective is determined

by whether (βs(t)−γ) > 0 (or < 0), which in turn leads to defineR0(θ) ≡ s(t0)β/γ

[107].

The various longitudinal incidence data sets -displayed in Figure 6.2- corre-

spond to observations of i(t). In fact, with observations Y1, . . . , Yn̄, then the ob-

jective function used in the optimizations (4.3) was given by:

J(θ) =
1

n̄

n̄∑
j=1

[i(tj, θ)− Yj]
2

The box constraints are displayed in Table 6.4. The infection rate β was

bounded according to [165] and references therein. On the other hand, the re-

covery rate γ was bounded in agreement with estimates and bounds provided in

[50, 165]. The inequality constraints for the optimization problem (4.3) were de-

termined by the set {q ∈ R4
+ : R0(q) > 1}.

For each data set, θ̂ denotes the solution to (4.3). The value J(θ̂) is used as a

quantification of the goodness of fit. Table 6.5 shows a summary of the goodness

of fit values over all seasons. Even though there are several distinct numbers of
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Table 6.4: Box constraints in (4.3) used for the estimation of influenza A (H3N2)

parameters.

Parameter Suitable Range Unit

s(t0) [0, 1] 1

i(t0) [10−5, 0.2] 1

β [0,10] 1/week

γ [0.583,5] 1/week

Table 6.5: Overall summary of the smallest average deviation per data point be-

tween the optimal solution i(t, θ̂) and data on the densities of reported cases with

A (H3N2) prevalent strains, in which θ̂ denotes the solution to (4.3).

Season Goodness of fit J(θ̂)

1997-1998 5.14× 10−6

1998-1999 9.46× 10−7

1999-2000 3.25× 10−6

2001-2002 4.18× 10−6

2002-2003 3.54× 10−7

2003-2004 9.30× 10−6

2004-2005 3.99× 10−6
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observations across all data sets, a consistent pattern of reasonable fits is observed

overall in Table 6.5.

The results obtained by fitting data on the 1997-1998 season are displayed in

both Table 6.5 and Figure 6.3. The third and fourth columns of Table 6.5 show

the weighted mean and standard deviation (using formulas (4.8) and (4.9)) of each

parameter, respectively.

The estimate of the infection rate is β = 2.52 weeks−1(95% CI: 2.43-2.65). Due

to the assumption of exponentially distributed waiting times in the infectious class

(see Appendix A), then the average time spent therein (infectious period length)

is 1/γ, which is estimated by 1/γ = 0.55 weeks (95% CI: 0.52-0.58).

Figure 6.3 displays both the longitudinal data (squares) and the numerical

solution i(t, θ̂) (solid line). Since the percentage of strains prevalence -according to

antigenic characterization- was unavailable for this season this data set was only

scaled by the total number of isolates. Just as reflected by the goodness of fit

value J(θ̂) = 5.14 × 10−6, both the “optimal solution i(t, θ̂)” and the empirical

data appear close to one another.

The data set corresponding to the 1998-1999 season was not scaled by the per-

centage of the most prevalent strain, as such information was unavailable. The

parameter estimates found for this data set are displayed in Table 6.7. The infec-

tion rate estimate is β = 2.71 weeks−1 (95% CI: 2.5-3.0), which is slightly greater

than the previous season’s (β = 2.52). On the other hand the mean infectious

period estimate is 1/γ = 0.53 weeks (95% CI: 0.48-0.59), in contrast, this estimate

is smaller than that of the 1997-1998 season. Figure 6.3 shows the longitudinal
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Table 6.6: Season 1997-1998

Parameter Best-fit θ̂ Mean STD

s(t0) 0.9998 0.9816 0.03316

i(t0) 1.001× 10−5 1.023× 10−5 4.56× 10−7

β 2.517 2.539 0.05587

γ 1.859 1.836 0.04635

R0(θ̂) 1.3535 1.3574 0.010048
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Figure 6.3: Longitudinal data and “optimal solution” corresponding to densities

of A (H3N2) isolates.
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Table 6.7: Season 1998-1999

Parameter Best-fit θ̂ Mean STD

s(t0) 0.8951 0.8729 0.05996

i(t0) 1× 10−5 1.013× 10−5 3.063× 10−7

β 2.705 2.749 0.127

γ 1.91 1.881 0.08302

R0(θ̂) 1.2677 1.2721 0.014602

incidence data retrieved from the CDC’s archives [53] and the numerical solution

to (6.4) using the optimum θ̂.

Table 6.8 summarizes the estimates obtained by fitting data corresponding

to the 1999-2000 season. The estimate of the average infectious period length

is 1/γ = 0.61 weeks (95% CI: 0.57-0.65). An increase is noticed relative to the

estimate obtained from the 1998-1999 season. The infection rate estimate is β =

2.13 weeks−1 (95% CI: 2.02-2.28). In turn, this 1999-2000 estimate is smaller than

that of the previous season. The data set corresponding to the 1999-2000 season

was scaled by the percentage of strain prevalence (see Table 6.3).

Figure 6.5 displays both the numerical best-fit solution i(t, θ̂) as well as the

time-series in densities of reported cases with the season most prevalent strain

A/Sydney/05/97 (H3N2).

In Table 6.9 the estimates corresponding to the 2001-2002 season are shown.

The average infectious period is estimated to be 1/γ = 0.64 weeks (95% CI: 0.62-

0.66). Despite the one season gap, there seems to be a mild increase relative to
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Figure 6.4: Empirical data and “optimal solution” corresponding to densities of A

(H3N2) isolates.

Table 6.8: Season 1999-2000

Parameter Best-fit θ̂ Mean STD

s(t0) 0.9999 0.9835 0.03736

i(t0) 3.37× 10−4 3.39× 10−4 1.66× 10−5

β 2.127 2.147 0.06517

γ 1.659 1.643 0.04313

R0(θ̂) 1.2815 1.2844 0.0099515
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Figure 6.5: Longitudinal data and “optimal solution i(t, θ̂)” corresponding to

scaled densities of A (H3N2) isolates.

the 1999-2000 estimated infectious period. The 2001-2002 infection rate estimate

is β = 2.11 weeks−1 (95% CI: 2.06-2.17). This estimate is smaller than the one

obtained from the 1999-2000 season.

Figure 6.6 shows the numerical solution i(t, θ̂) and the approximated densities

of reported cases of the most prevalent strain A/Panama/2007/99 (H3N2).

Figure 6.7 displays the longitudinal data (squares) on densities of isolates of the

2002-2003 most prevalent strain A/Panama/2007/99 (H3N2). Also, the numerical

solution with the optimal parameter θ̂ is shown in Figure 6.7.

In Table 6.10 the 2002-2003 parameter estimates are summarized. The 2002-

2003 infection rate estimate is β = 9.99 weeks−1 (95% CI: 8.96-10.6). A very sharp

increase is observed with respect to the 2001-2002 estimate (β = 2.11). Apparently,

this rise is related to the low estimate of the effective susceptible fraction s(t0).
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Table 6.9: Season 2001-2002

Parameter Best-fit θ̂ Mean STD

s(t0) 0.9995 0.9889 0.01938

i(t0) 1× 10−5 1.009× 10−5 2.086× 10−7

β 2.11 2.12 0.02802

γ 1.583 1.571 0.02226

R0(θ̂) 1.332 1.3345 0.0054118
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Figure 6.6: Longitudinal data and “optimal solution i(t, θ̂)” corresponding to

scaled densities of A (H3N2) isolates.
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Table 6.10: Season 2002-2003

Parameter Best-fit θ̂ Mean STD

s(t0) 0.1776 0.1839 0.02479

i(t0) 1× 10−5 1.031× 10−5 8.359× 10−7

β 9.99 9.799 0.4279

γ 1.224 1.245 0.08261

R0(θ̂) 1.4495 1.4412 0.022019

The 2002-2003 estimate of the average infectious period length is 1/γ = 0.81 weeks

(95% CI: 0.73-0.88). Although this estimate in greater than the previous season’s,

yet such increment is not as sharp as that one observed in the infection rate.

In Table 6.11 the 2003-2004 estimates are shown. The infection rate estimate

is β = 2.75 weeks−1 (95% CI: 2.37-3.33). There is a decrease relative to the 2002-

2003 estimate, which seems to be consistent with a higher effective susceptible

population size s(t0). On the other hand, the infectious period estimate is 1/γ =

0.52 weeks (95% CI: 0.43-0.61). Such estimate is smaller with respect to the

previous season’s.

Figure 6.8 displays the numerical solution with the best-fit parameter θ̂, as well

as the empirical data on the 2003-2004 densities of reported cases with the most

prevalent strain A/Fujian/411/2002 (H3N2).

The 2004-2005 densities of reported cases (squares) with the most prevalent

strain A/California/7/2004 (H3N2) are displayed in Figure 6.9. The numerical

solution to (6.4) using θ̂ is also shown in Figure 6.9.
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Figure 6.7: Longitudinal data and “optimal solution i(t, θ̂)” corresponding to

scaled densities of A (H3N2) isolates.

Table 6.11: Season 2003-2004

Parameter Best-fit θ̂ Mean STD

s(t0) 0.9997 0.9524 0.08791

i(t0) 1.12× 10−4 1.11× 10−4 1.55e− 05

β 2.746 2.846 0.2449

γ 1.992 1.935 0.1229

R0(θ̂) 1.3779 1.3928 0.03885
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Figure 6.8: Longitudinal data and “optimal solution i(t, θ̂)” corresponding to

scaled densities of A (H3N2) isolates.

In Table 6.12, the 2004-2005 estimates are summarized. The infectious period

estimate is 1/γ = 0.52 weeks (95% CI: 0.48-0.55). Whereas, the infectious rate

estimate is β = 2.44 (95% CI: 2.31-2.62).

In Figure 6.10 parameter estimates across all seasons are displayed. Trends of

change over time are observed in Figure 6.10, for instance, both β and 1/γ show

opposite behavior (when one grows the other decays) up to the 2002-2003 season,

when both increase. Such increment seems to be related to the sudden drop in the

effective susceptible fraction s(t0) occurring during the 2002-2003 season.

Figure 6.11 shows the basic reproductive number estimates -with their con-

fidence intervals- over all seasons. These estimates are the following: 1997-1998

estimate is R0 = 1.35 (95% CI: 1.34-1.38), 1998-1999 estimate is R0 = 1.27 (95%

CI: 1.24-1.3), 1999-2000 estimate is R0 = 1.28 (95% CI: 1.26-1.3), 2001-2002 esti-
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Table 6.12: Season 2004-2005

Parameter Best-fit θ̂ Mean STD

s(t0) 0.9999 0.9848 0.03686

i(t0) 2.423× 10−5 2.429× 10−5 1.384× 10−6

β 2.441 2.464 0.07767

γ 1.959 1.943 0.05267

R0(θ̂) 1.2456 1.2478 0.0091528
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Figure 6.9: Longitudinal data and “optimal solution i(t, θ̂)” corresponding to

scaled densities of A (H3N2) isolates.
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Table 6.13: Basic reproductive number R0 estimates and some descriptive statis-

tics of R0 distributions obtained from genetic algortihms. STD denotes standard

deviation and IQR stands for interquartile range.

Season R0(θ̂) estimate R0 Mean R0 STD R0 Median R0 IQR

1997-1998 1.3535 1.3574 0.0100 1.3547 1.3528-1.3593

1998-1999 1.2677 1.2721 0.0146 1.2691 1.2669-1.2700

1999-2000 1.2815 1.2844 0.0010 1.282 1.2814-1.2847

2001-2002 1.332 1.3345 0.0054 1.3335 1.3328-1.3349

2002-2003 1.4495 1.4412 0.0220 1.4461 1.4416-1.449

2003-2004 1.3779 1.3928 0.0389 1.3803 1.378-1.393

2004-2005 1.2456 1.2478 0.0092 1.2458 1.2455-1.2474

mate is R0 = 1.33 (95% CI: 1.32-1.35), 2002-2003 estimate is R0 = 1.45 (95% CI:

1.40-1.48), 2003-2004 estimate is R0 = 1.38 (95% CI: 1.32-1.47), and 2004-2005

estimate is R0 = 1.25 (95% CI: 1.23-1.27).

Figures 6.12 and 6.13 show R0 frequency distributions obtained from several

implementations of Algorithm 3. The shape of these distributions varies from

season to season. However, there seems to be a common skewness trend overall.

The plots displayed in Figures 6.12 and 6.13 correspond to truncated graphs of

such distributions, in order to enchance resolution.

In Table 6.13 a summary of the basic reproductive number estimates (given by

R0(θ̂)) and some R0 descriptive statistics can be found.
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Figure 6.10: Parameter estimates with confidence intervals over all seasons.
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Figure 6.12: Basic reproductive number R0 frequency distributions obtained from

genetic algorithms estimation. For purposes of resolution, truncated histograms

are displayed. Frequency distributions corresponding to seasons 1997 through 2001

are shown.
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6.6 Challenges in Estimations via GA’s

Consider the following model known as the single-outbreak SIR model [107]:
s′ = −βsi

i′ = βsi− γi

r′ = γi

(6.5)

where 1 = s(t)+ i(t)+ r(t). As it was derived in Chapter 2, the final epidemic size

r̂∞ is the solution to a transcendental equation (2.5), and the fraction that never

became infected is given by ŝ∞ = 1 − r̂∞. In fact, since the parameter of system

(6.5) is θ = (s(t0), i(t0), β, γ); then r̂∞ ≡ r̂∞(θ) and ŝ∞ ≡ ŝ∞(θ).

In attempt to asses the role of the effective susceptible fraction in seasonal dy-

namics, an estimation experiment was designed as follows: choose parameter val-

ues and generate simulated data corresponding to two consecutive seasons which

are connected by the initial conditions as functions of the final epidemic size.

More specifically, choose parameters and implement the continuous-time Markov

chain [4] version of (6.5), in order to generate simulated longitudinal data. Let

(s1(t0), i
1(t0), β

1, γ1, ŝ1
∞, r̂1

∞) and (s2(t0), i
2(t0), β

2, γ2, ŝ2
∞, r̂2

∞) denote the parame-

ters of season 1 and season 2, respectively. In season 1, set s1(t0) = 0.999 and

i1(t0) = 0.0001, whereas for season 2, set s2(t0) = ŝ1
∞+ r̂1

∞ [βp
2/β

a
1 ], for some choice

of parameters a and p.

The next step in the experiment consisted in fitting system (6.5) to the simu-

lated longitudinal data using genetic algorithms (GA) in order to retrieve estimates

of the joint distributions of (s1(t0), i
1(t0), β

1, γ1, ŝ1
∞, r̂1

∞) and

(s2(t0), i
2(t0), β

2, γ2, ŝ2
∞, r̂2

∞).
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Table 6.14: Simulated data sets test #1.

Functional Form Goodness of Fit Parameter Parameter

f(x; a, p) 94.29 a = 1.028× 10−10 p = 0.8606

g(x; α) 1104 α = 13

Table 6.15: Simulated data sets test #2.

Functional Form Goodness of Fit Parameter Parameter

f(x; a, p) 1721 a = 3.821× 10−12 p = 2.064× 10−13

g(x; α) 175.6 α = 4.765

Let x = (ŝ1
∞, r̂1

∞, β1, β2) and define the following functional forms:

f(x; a, p) = ŝ1
∞ + r̂1

∞

[
βp

2

βa
1

]
(6.6)

g(x; α) = ŝ1
∞ + r̂1

∞

[
1− e−α(β2−β1)2

]
(6.7)

Observe that f(x; a, p) has parameters a and p, whereas g(x; α) has parameter

α. Then, both functional forms (6.6) and (6.7), by way of least-squares estimation,

were fitted to the distribution of s2(t0), obtained from the GA.

The results of the least-squares estimations corresponding to two tests of sim-

ulated data sets, are displayed in Tables 6.14 and 6.15. The goodness of fit is

the least-squares objective function evaluated at the optimal parameter. Clearly,

in either test the estimation fails, since the goodness of fit values are remarkably

away from zero. This failure is suggestive of challenges in GA estimations. Indeed,
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in order to test hypotheses about reductions in the effective susceptible fractions

based in the previous seasons, another types of data need to be collected. More-

over, simple aggregate models such as (6.5) do not suffice in order to estimate how

immunological history reflects at the population level.

6.7 Discussion

The infectious period estimates obtained from all seasons range between 1/γ = 0.52

weeks (95% CI: 0.43-0.61) and 1/γ = 0.81 weeks (95 % CI: 0.73-0.88). The esti-

mates close to the lower bound are in agreement with values found by Cauchemez

et al. (see [50] and references therein) in a study employing household longitudi-

nal data corresponding to seasonal influenza. Cauchemez et al. stated that the

average infectious period is 0.54 weeks (95% CI: 0.44-0.66).

The U. S. estimates on the infectious rate during 1997-2005, range between

β = 2.11 weeks−1 (95% CI: 2.06-2.17) and β = 2.75 weeks−1 (95% CI: 2.37-3.33),

yet with a sole rise in 2002 of β = 9.99 weeks−1 (95% CI: 8.96-10.6). Cauchemez

et al. [50] determined that the household risk of infection is 2.24 person weeks

−1 (95% CI: 1.82-2.73). Once again, the U.S. estimates found seem to fall within

reasonably “realistic” ranges, as it can be confirmed by the Cauchemez et al. [50]

studies.

The trends displayed in Figure 6.10 Panels (a), (b), and (c) suggest that a

sudden event occurred in the 2002-2003 season. As it is seen from Panels (b) and

(c), the infection rate and infectious period show an opposite monotonic behavior

up to the season 2002-2003 where both quantities rise significantly. Such inflation
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seems to balance the sudden drop in the effective susceptible fraction s(t0); which

is above 0.89 during all seasons, yet in 2002 decays to 0.18 (see Panel (a) in Figure

6.10). Indeed, these estimates reflect what the CDC reports as a “mild season” with

wide circulation of influenza A (H1) and B viruses, yet the predominant virus varied

by region and time of the season [53]. Therefore, the 2002 low estimate s(t0) = 0.18

reflects what did occur during such season, simply a reduction in susceptibility took

place, presumably due to the immunological history in the population of hosts.

The basic reproductive number R0 estimates corresponding to seasons 1997

through 2005 in the U.S., range between R0 = 1.25 (95% CI: 1.23-1.27) and

R0 = 1.45 (95% CI: 1.4-1.48). In the literature there are, to the best of our

knowledge, not too many estimates of seasonal influenza R0. However, a handful

of suitable ranges and estimates has been determined by Bonabeau et al. [31],

Hyman and LaForce [113], and Dushoff et al. [73]. Indeed, Hyman and Laforce

[113] set R0 = 1.02, whereas Bonabeau et al. [31] estimated (from spatio-temporal

data) 1.09 ≤ R0 ≤ 1.73; therefore the U.S. 1997-2005 R0 estimates seem to be

compatible with such empirically determined ranges. On the other hand, Dushoff

et al. [73] set a suitable range at 4 < R0 < 16; which is discrepant with the

1997-2005 R0 estimates.

The estimatedR0 frequency distributions corresponding seasonal influenza dur-

ing 1997 through 2005, are displayed in Figures 6.12 and 6.13. Overall consistent

skewness trends are observed, yet the 1998-1999 R0 distribution shows a major

accumulation around the mean, with two noted mild bursts around 1.28 and 1.32.

These estimated distributions support regularity in the R0 estimation ranges,
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in the sense that there is a lack of sharp fluctuations over a wide range of values

in R0 (such as: 4 < R0 < 16 [73], 0 < R0 < 21[82], or 0.17 ≤ R0 ≤ 25 [130, 180]).

In fact, it is observed in Table 6.13 that the weighted mean and median of R0 are

very close in every season. Moreover, the interquartile range is consistently tight

for every R0 distribution, implying: (i) accumulations centered around the median

and (ii) mild dispersion in the R0 values. In addition, the reproductive numbers

displayed in Figure 6.11 -which fall within each distribution in Figures 6.12 and

6.13- illustrate the regularity in the estimation, since moderate variability is shown

and yet no sharp transitions take place.

The range of the U.S. 1997-2005 R0 estimates -i.e. above R0 = 1.25 (95%

CI: 1.23-1.27) and below R0 = 1.45 (95% CI: 1.4-1.48)- is compatible with: (i)

1918 pandemic estimates where R0 = 1.49 (95% CI: 1.45-153) [59], (ii) baseline

value R0 = 1.39 set in antiviral drug use assessment [87], and (iii) suitable values

R0 = 1.1 and R0 = 1.4 [138], used in assessment of targeted prophylaxis, quaran-

tine, and pre-vaccination against an emerging H5N1 strain. As a matter of fact,

even in the case of newly emerging diseases such as SARS (severe acute respi-

ratory syndrome), proved highly pathogenic, which counted with super-spreaders

propelling transmission; there are estimates of SARS’ basic reproductive number

below 4 (see [105] references therein; R0 ∈ {1.1, 1.2, 2.2, 2.9, 3, 3.6}).

Despite the CDC disclaimer about inaccuracy in the numbers of ill people

with influenza [53], the data collected by the CDC Influenza Surveillance system

reflects the patterns of seasonal spread nationwide. Based on these “first-order”

approximation patterns, we used theoretical tools to analyze seasonal dynamics by
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means of reproductive number estimations. Our study is suggestive of regular and

consistent estimates of R0 over seven seasons in the U.S. In order to supplement

this nationwide study, a regional R0 estimation may provide further insight. Since

the CDC Influenza Surveillance system posts seasonal data for eight regions (see

[53]), then an estimation of R0 frequency distributions may serve to characterize

the seasonal spread on each region and then raise potential comparisons.



Chapter 7

Conclusion
This thesis offers humble contributions regarding mathematical descriptions and

parameter estimation of contact processes. The contact processes considered through-

out include: rumor dissemination, scientific ideas diffusion, and influenza trans-

mission. Genetic Algorithms (GA) -a class of stochastic optimization methods-

are applied to estimate parameters in the various mathematical models developed

herein.

The caricature models of rumor dissemination presented in Chapter 3 depict

two main events: rumor activation and rumor halting. In the case of homoge-

neously mixing populations, we concluded that the choice of density-dependent

rumor halting rates determines complex dynamics ranging from stable fixed points

to stable periodic solutions. Indeed, the existence of Hopf-bifurcations in rumor

models is, to the best of our knowledge, a novel discovery. On the other hand, in

the case of heterogeneously mixing populations, the role of community structure in

rumor spread was assessed by numerical means. Communities were simulated via

random graphs and stochastic rumor models were implemented in order to obtain

statistical samples of the initial rate of growth and the final spreading size as func-

tions of the community structure. We confirmed that both the initial growth and

final size are sensitive to the network architecture -supporting that social networks

enhance dissemination: (i) small-world networks showed regions of transitions in

the final size and initial growth that are consistent with their structural properties,

and (ii) LLYD networks appeared to inherit the structural properties of scale-free

118
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networks establishing families of simulated communities with optimal landscapes

for transmission. This comparative study across families of networks (small-world

and LLYD) by sampling both the final size and initial growth is also a novel con-

tribution.

The application of GA to estimate parameters of contact processes was in-

troduced to the author of this dissertation by Bettencourt [27], as a result of a

published collaboration [26]. One of the limitations of GA is the lack of theory

in order to formally support convergence in probability and rates of convergence

of such optimization algorithms. Some of the advantages of GA include: (i) they

do not require derivatives of the objective function, instead they only employ

evaluations, (ii) suitability to navigate diverse parameter landscapes ranging from

smooth regions to deep valleys with some sharp discontinuities and rugged regions,

(iii) estimates to joint distributions of model parameters are the outcome of GA

and measures of uncertainty on the estimations are drawn from such distributions.

Chapter 4 presents GA in the context of epidemiological parameter estimation.

In Chapter 5 we conveyed the growth of scientific literature by means of Social

Contagion. The dissemination of a scientific idea amongst a technical community

was modeled as a contact process. In the well-mixed limit, we argued that acceler-

ation to adoption of the idea -as a function of the contacts between apprentices and

adopters- indeed drives subcritical (backward) bifurcations. This novel qualitative

result implies that it is nearly impossible to eradicate an “established” population

of adopters, since a backward bifurcation is a signature of an explosive growth

within a bi-stability region. GA were applied to simulated longitudinal data in or-
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der illustrate the role of community structure in literature growth. Distributions of

basic reproductive numbers R0 -retrieved by the GA- were used to compare trans-

mission across all simulated communities. Erdös-Renyi random graphs exhibited

the highest values of R0 with fairly dispersed distributions.

In Chapter 6, GA were used to estimate distributions of influenza clinical repro-

ductive numbers. Certainly, by using strain-specific data collected by the Centers

for Disease Control and Prevention, we obtained estimates ranging from R0 = 1.25

(95% CI: 1.23-1.27) toR0 = 1.45 (95% CI: 1.4-1.48), during seven influenza seasons

in the U.S. These estimations were very consistent with moderate-to-low variabil-

ity and provided novel contributions in the epidemiology of influenza as there is

only a handful of reproductive number estimates based on seasonal patterns.

The strength of the humble contributions offered in this thesis resides in ap-

plications of parameter estimation methods and analysis and simulation of simple

mathematical models of contact processes.



Appendix A

Exponentially Distributed Waiting

Times in Epidemic Models
The following derivation is adapted from [35]. Suppose that I(τ) denotes the

number of people who remain infected at time τ . Let γ denote the per capita

recovery rate and suppose the dynamics of I(τ) is governed by ,

dI(τ)
dτ

= −γI(τ), 0 ≤ γ < ∞, I(0) = I0.

Therefore,

I(τ)
I0

= e−γτ , for τ ≥ 0,

in other words, e−γτ denotes the proportion of individuals who were infected at

time τ = 0 are still infected at time τ = τ .

Next,

F (τ) =

 1− e−γτ for τ ≥ 0

0 for τ < 0

gives the probability of recovering from infection in the time interval [0, τ). Notice

that F (τ) is a probability distribution and therefore satisfies,

(i) F (τ) ≥ 0,

(ii) limτ→−∞ F (τ) = 0,

(iii) limτ→∞ F (τ) = 1

Indeed, F (τ) is the exponential cumulative probability distribution.
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Let X denote the time to recover of an individual, so that it takes on the values

[0,∞) with some probability. If we choose to model the time to recover X with

an exponential probability distribution then,

Prob[X ≤ τ ] ≡ F (τ) =

 1− e−γτ for τ ≥ 0

0 for τ < 0

Hence, we may approximate the probability density associated with F (τ), since

for small ∆,

Prob[τ < X ≤ τ + ∆] ≈ ∆

(
lim
∆→0

F (τ + ∆)− F (τ)

∆

)
= ∆f(τ),

where f(τ) = dF/dτ is the probability density function of X which satisfies,

(i) f(τ) ≥ 0,

(ii)
∫∞
−∞ f(τ)dτ

(iii) Prob[τ < X ≤ τ + ∆] =
∫ τ+∆

τ
f(s)ds = f(τ)∆

Therefore,

Prob[recovery in(τ, τ + ∆)] ≈ γe−γτ∆

Moreover, the average time before recovery is given by,

E[X] ≡
∫ ∞

−∞
τf(τ)dτ =

1

γ

We may compute the probability that one recovers before τ + ∆ given that one

was infected at time τ , by applying Bayes’ theorem:

Prob[X ≤ τ + ∆|X > τ ] =
Prob[τ < X ≤ τ + ∆]

Prob[X > τ ]
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In view of,

Prob[τ < X ≤ τ + ∆]

Prob[X > τ ]
≈ f(τ)∆

1− F (τ)
=

γe−γτ∆

e−γτ

we obtain,

Prob[X ≤ τ + ∆|X > τ ] ≈ γ∆



Appendix B

Note on Normal Random Variables
Suppose X has continuous density f , P (α ≤ X ≤ β) = 1, and g is strictly increas-

ing and differentiable on (α, β). Then g(X) has density f(g−1(x))/g′(g−1(g(x)))

for x ∈ (g(α), g(β)) and 0 otherwise [72].

In view of the monotonicity of g, we have g(α) ≤ g(X) ≤ g(β) given α ≤ X ≤

β. Additionally, notice that x = g(g−1(x)) implies d/dx[g−1(x)] = g′(g−1(x)), thus

if z = g−1(x) then dz = dx/g′(g−1(x)). We use this change of variables in the

following calculation: ∫ g(β)

g(α)

f(g−1(x))dx

g′(g−1(x))
=

∫ β

α

f(z)dz = 1

thus P (g(α) ≤ Y ≤ g(β)) =
∫ g(β)

g(α)
f(g−1(y))
g′(g−1(y))

dy = 1, where Y = g(X). In particular,

when g(x) = ax + b with a > 0, then g(X) has density f((x− b)/a)/a.

If X has standard normal distribution, then:

E [X] =
∫∞
−∞

t exp(−t2/2)dt√
2π

= 0 (by symmetry)

var(X) = E [X2] =
∫∞
−∞

t2 exp(−t2/2)dt√
2π

= 1

Furthermore, consider σ > 0, µ ∈ (−∞,∞), and g(x) = σx+µ. Then, E [g(X)] =

µ and var(X) = σ2. Also, Y = g(X) has density:

exp(−(y − µ)2/2σ2)√
σ22π

In other words, g(X) has normal distribution with mean µ and variance σ2 [72].
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Appendix C

Proof of Baba-Shoman-Sawaragi’s

Theorem
Theorem C.0.1. (Baba-Shoman-Sawaragi). Suppose that J is continuous on

S. Let G be the set of multiple minima of J in S. For a given θ̂ ∈ G, let Rε(θ̂) be

a region defined by

Rε(θ̂) = {θ ∈ S : |J(θ)− J(θ̂)| < ε}

Therefore, for any ε > 0, the sequence {θ(k)}∞k=1 obtained by Algorithm 1, con-

verges in probability to the region
⋃

θ̂∈G Rε(θ̂), i.e.

lim
k→∞

P

θ(k) ∈
⋃
θ̂∈G

Rε(θ̂)

 = 1

Proof: This theorem is due to Baba and Shoman and below we reproduce (in

our own words and notation) their proof given in [12].

Let θ̂ be an arbitrary element of G. In addtion, let ε > 0 be given.

Since J ∈ C0(S), then there exists δ̂ > 0, such that,

If ||θ − θ̂|| < δ̂ ⇒ ||J(θ)− J(θ̂)|| < ε

2
(C.1)

Define δ̄ = min(δ̂, infw∈∂S ||w − θ̂||), where ∂S denotes the boundary of S.

Clearly, δ̄ > 0. Furthermore, it is readily seen that,

for any θ such that |θ − θ̂| < δ̄ then |J(θ)− J(θ̂)| < ε
2

(C.2)
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Define A = {z : ||z − θ̂|| < δ̄}

Let f be the probability density function of ξ(k)(k = 1, 2, 3 . . . ). Notice that

for a fixed k, if y = θ(k) + ξ(k) ∈ A, then ||y − θ(k)|| < 2r̄ (recall that S = {v : v ∈

Rp, ||v|| < r̄}), thus,

0 < inf
y∈A,θ(k)∈S\A

f(y − θ(k))
def
= β (C.3)

since f > 0 by assumption.

Suppose that θ(k) ∈ S\A, for an arbitrary k. Hence, in the next step the

probability that θ(k+1) enters into region A becomes

P{θ(k+1) ∈ A|θ(k) ∈ S\A}

= P{θ(k) + ξ(k) ∈ A|θ(k) ∈ S\A}

=
∫

A
f(y − θ(k))dy

≥ βM(A)

(C.4)

where, M(A) is the measure of A in Rp, and β is defined in (C.3).

Define K = {θ ∈ S : |J(θ) − J(θ̂)| ≤ ε
2
}, then it follows from continuity of J

that A ⊂ K.

Let I(·) denote an indicator function, i.e. it equals one if the input is true and

zero otherwise.

Observe that

if r + 1 ≤ σk then θ(k) ∈ K (C.5)

where r =
⌊

J(θ(1))−J(θ̂)
ε/2

⌋
, and

σk =
k−1∑
i=1

I
(
J(θ(i+1)) ≤ J(θ(i))− ε

2

)
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Let us find a lower bound for the probability that J(θ(i+1)) decreases by ε/2

conditional to enter the region Rε(θ̂), namely, for any i ≥ 1,

P{1 = I
(
J(θ(i+1)) ≤ J(θ(i))− ε

2

)
|θ(i) ∈ S\Rε(θ̂)}

≥ P{θi + ξi ∈ K|θ(i) ∈ S\Rε(θ̂)}

≥ P{θi + ξi ∈ A|θ(i) ∈ S\Rε(θ̂)}

≥ γ

(C.6)

where γ = βM(A) and the inclusion A ⊂ K implies the second inequality of

(C.6).

Let ρ(u, V ) = infv∈V ||u− v||.

Therefore, for any δ > 0,

P{ρ(θ(k), Rε(θ̂)) > δ}

≤ P{ρ(θ(k), K) > δ}

≤ P {σk < r + 1|θj ∈ S\K, for j = 1, . . . , k − 1}

≤ P
{

σk < r + 1|θj ∈ S\Rε(θ̂), for j = 1, . . . , k − 1
}

≤
∑r

i=0

(
k−1

i

)
(1− γ)(k−1)−i

(C.7)

where, the first inequality in (C.7) follows from K ⊂ Rε(θ̂). On the other hand,

(C.5) implies the second inequality.

Let M be a positive number such that

M ≥ 1
(1−γ)i for all i, i = 0, . . . , r



128

Moreover, let k − 1 > 2m, thus,

P
{

ρ(θ(k), Rε(θ̂)) > δ
}
≤

∑r
i=0

(
k−1

i

)
(1− γ)k−1M

≤ M(m + 1)
(

k−1
m

)
(1− γ)k−1

≤ M(m+1)
m!

(k − 1)m(1− γ)k−1

Hence,

lim
k→∞

P
{

ρ(θ(k), Rε(θ̂)) > δ
}

= 0

Notice that since θ̂ ∈ G is arbitrary, then

lim
k→∞

P

ρ

θ(k),
⋃
θ̂∈G

Rε(θ̂)

 > δ

 = 0, for any δ > 0

Therefore,

lim
k→∞

P

θ(k) ∈
⋃
θ̂∈G

Rε(θ̂)

 = 1



Appendix D

Code for GA Applied to Parameter

Estimation
Below we briefly describe the MATLAB (registered trademark of The Mathworks

Inc.) code that implements Algorithm 4.4.

driver sir.m Driver for the estimation of parameters in a S-I-R epidemic model.

It calls init q.m and ga.m.

driver sei.m Driver for the estimation of parameters in a S-E-I epidemic model.

It also calls init q.m and ga.m.

ga.m It implements all the steps of Algorithm 3. It receives the file with the

longitudinal data to be fitted and a matrix with a population of parameters.

It saves all the sets M (k) in (4.6).

init q.m This function initialize the population of parameters in the feasible

region (Initialization in Algorithm 3) and stores them as rows of a matrix.

sav ranges.m It creates a p-by-2 matrix whose rows contain the box constraints

specified by the feasible region F .

sei.m System of nonlinear differential equations corresponding to the S-E-I epi-

demic model [107].

sir1.m System of nonlinear differential equations corresponding to the S-I-R epi-

demic model [107].
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T. Banks and C. Castillo-Chávez, ed.), Frontiers in Applied Mathematics, vol.
28, SIAM, 2003, pp. 35-53.

[56] G. Chowell, J. M. Hyman, S. Eubank, and C. Castillo-Chávez, Scaling laws
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