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a b s t r a c t

We present a preliminary first-pass dynamic model for delivery of drug compounds to the
lungs and heart. We use a compartmental mass-balance approach to develop a system of
nonlinear differential equations formass accumulated in the heart as a result of intravenous
injection. We discuss sensitivity analysis as well as methodology for minimizing mass in
the heart while maximizing mass delivered to the lungs on a first circulatory pass.

© 2009 Published by Elsevier Ltd

1. Introduction

Pharmaceutical companies make significant investment in drug design and development which often primarily entails
experiments and clinical trials. Mathematical models for drug uptake andmetabolism can, if properly used, be of substantial
value in this development process. In this paper we focus first on the process of developing such a model. We then illustrate
the use of associated computational methodologies including optimization (maximizing drug delivery to target organs
while minimizing amounts at other sensitive sites) and sensitivity analysis (with respect to model parameters and initial
conditions. In particular we investigate the potential for first-pass effects on the heart that can result from intravenous (i.v.)
administration of medicines relative to that for orally administered medicines. The goal of such a model is to determine
a strategy for i.v. infusion that will minimize the risk of cardiovascular adverse effects given the chemical properties of
the drug. Such models would prove to be very valuable for example in guiding dose administration in the treatment of
pneumonia as some anti-bacterial agents carry cardiovascular liabilities. Alternatively, it could guide dose administration
for an anti-cancer medicine in the treatment of lung cancer. Orally administered drugs do not pose this risk to patients. Also,
model predictions could guide the synthesis of drug candidates. Because the model contains parameters describing drug
absorption and metabolism, model predictions could help identify candidate drugs with properties that maximize efficacy
in the lung (i.e., kill bacteria, arrest cancer cells) and minimize the risk of cardiovascular side effects (i.e., tachycardia).

To illustrate themodeling process for drug delivery andmetabolism,we consider a class of antibiotics for the treatment of
pneumonia with the lungs as target organs for delivery. We assume that the drugs are suspected of producing heart damage
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Fig. 1. Simplification of circulatory system.

Table 1
Time-dependent state variables.

State variable Definition

MP Mass of drug in pulmonary artery
ML Mass of drug in blood supply to lung
MT Mass of drug in lung tissue
MA Mass of drug in ascending aorta
MC Mass of drug in blood supply to heart
MH Mass of drug in heart tissue

in organisms being treated. Pre-clinical trials in animals have shown that some antibiotics cause arrhythmias in the hearts of
the animals when the drug is administered intravenously, and arrhythmias sometimes occur more frequently with a higher
overall dose. This is a serious concern because these arrhythmias pose a heart attack risk. Arrhythmias do not occur when
the compound is administered orally, but this may be explained by a lower overall dose.

Although the mechanism behind the drug-related arrhythmias is unknown, one hypothesis is that accumulation of the
drug in the cardiac tissue, mostly from the first pass of the drug through the body, is one of the main factors. We develop a
preliminary mathematical-pharmacokinetic model to analyze how the drug is distributed throughout the body for different
dosage strategies. For a good overview of using differential equations to model components of the cardiovascular system
see [1]. The main goal of the model used here is to predict, for a given dosage regimen, the accumulation of the drug in the
cardiac and pulmonary tissue from its first pass through the organs. Because we aremostly concernedwith the effects of the
drug during its first pass through the system, we will not consider the effects of systemic circulation such as metabolism in
the liver. With such models, one should be able to find an optimal dosing strategy that maximizes accumulation of the drug
in the lungs, in order to treat pneumonia, while minimizing accumulation in the cardiac tissue.

In Section 2 we give details for a preliminary first-pass dynamic model for delivery of drug compounds to the lungs and
heart. This is followed by simulation results reported in Section 3 along with a description of a computational methodology
for choosing optimal injection strategies. A general methodology for sensitivity studies along with sample calculations are
presented in Section 4.

2. Model description

A description of the model compartments, or state variables, along with the equations, parameters, and assumptions
of the model will be given here. In compartmental modeling, a compartment can represent a physiological subdivision of
a system throughout which the behavior of a substance is uniform [2], and an important part of the development of the
model is how the compartments are chosen. A grossly simplified representation of the circulatory system can be seen in
Fig. 1. After the drug is injected into a vein leading to the vena cavae, it passes through the right atrium, right ventricle,
pulmonary artery, lungs, pulmonary vein, left atrium, left ventricle, aorta, coronary artery, and heart tissue.

As can be seen in Table 1, compartments were not created for all of these physiological parts. As the drug passes through
the veins and arteries, it is assumed that no amount of the drug is lost, and all of the drug passes through. Inclusion of a vein
or artery in themodel ensures that the flow rate into the next compartment is represented correctly. Because we are mostly
concerned with the flow rates of the drug into the heart and lung, compartments representing arteries preceding these two
organswere included.While one could argue that including compartments for the pulmonary vein and right and left sides of
the heartwouldmake themodelmore accurate, additional compartmentswould require thatmore parameters be estimated.
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Fig. 2. Compartment model diagram.

In this initial model, we have attempted to balance the trade-off between the number of parameters contained in the model
and accuracy of the mathematical representation of the physical system. Another reason the compartments were chosen as
depicted is that scientists have the ability to take blood samplemeasurements at many of the physiological sites included as
compartments in ourmodel [3]. Thesemeasurements could be used in calibration and validation investigations of themodel.
A schematic of the model is given in Fig. 2, and mathematical descriptions of the rate at which the drug enters/exits the
compartments in the model are presented in Eqs. (2.1)–(2.6). These equations were obtained (under assumptions described
below) using mass-balance principles, and their initial conditions are given by (2.7).

dMP

dt
= CU(t) − QT

VP
MP(t) (2.1)

dML

dt
= QT

VP
MP(t) −

(
a − aMT (t)

K1 + MT (t)

)
ML(t) − QT

VL
ML(t) (2.2)

dMT

dt
=

(
a − aMT (t)

K1 + MT (t)

)
ML(t) − bMT (t)

K2 + MT (t)
MT (t) (2.3)

dMA

dt
= QT

VL
ML(t) − QT

VA
MA(t) (2.4)

dMC

dt
= QC

VA
MA(t) −

(
c − cMH(t)

K3 + MH(t)

)
MC (t) − QC

VC
MC (t) (2.5)

dMH

dt
=

(
c − cMH(t)

K3 + MH(t)

)
MC (t) (2.6)

MP(t0) = ML(t0) = MT (t0) = MA(t0) = MC (t0) = MH(t0) = 0. (2.7)

The parameter CU(t) in Eq. (2.1) represents the rate atwhich the drug is injected at time t , and twodifferentmathematical
descriptions of the time-dependent parameter CU(t) for the case of constant injection rate are given in expressions (2.8) and
(2.9):

CU(t) =
{
fd if 0 ≤ t ≤ τ
0 if t > τ ,

(2.8)

CU(t) =
{
f
D
T

if 0 ≤ t ≤ T
0 if t > T .

(2.9)

In expression (2.8), d represents the dose rate, τ represents the dose delivery time, and f is the fraction of unbound drug in
the blood plasma; in expression (2.9), D represents the total dose administered, and T is the dose delivery time. These two
alternative descriptions of the injection rate allow for the investigation of different questions regarding dosing regimens.
Fixing d and varying τ in (2.8) are analogous to injecting the drug at the same rate for different amounts of time, while fixing
D and varying T in (2.9) represent applying the same total dose for different amounts of time.

Sheep are important animalmodels used for the study of drug kinetics and blood flow, and their bodyweight and size are
similar to that of humans [4]. The values for the parameters in Table 2 represent the circulatory and cardiovascular systems of
sheep, and values for many of the parameters were obtained from [3]. (We remark that the specific values obtained from [3]
may not be appropriate for use in our first-pass model, but can be used to produce simulations illustrating the ideas and
methodology presented in this paper.) Of these parameters, onlyQT andQC weremeasured directly in efforts reported in [3];
values for VP , VL, and VC were estimated by fitting amodel to data under conditions different from those in our investigations
here. A value for the volume of the ascending aorta in sheep could not be found; however, a value was found for humans [5].
Using the human ascending aorta volume (.082 L) and a value of 5.0 L/min for the total cardiac output for humans [6], we
obtained the sheep volume by assuming the ratio of ascending aorta volume to total cardiac output is equal between the two
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Table 2
Parameter values.
Parameter Definition and origin Baseline value Unit Source

QT Cardiac output (flow rate) (Bio) 5.6 L/min [3]
VP Effective pulmonary mixing volume (Bio) 0.255 L [3]
VL Volume of the lung (Bio) 1.06 L [3]
a Maximum rate for absorption into lung tissue (Chem) 1 (min)−1 Assumed
K1 Shape parameter for absorption into lung (Chem) 1 mg Assumed
b Maximum rate for metabolism in lung (Chem) 0.10 (min)−1 Assumed
K2 Shape parameter for metabolism in lung (Chem) 1 mg Assumed
VA Volume of the ascending aorta (Bio) 0.10 L Derived from [5]
QC Flow rate through coronary artery (Bio) 0.122 L/min [3]
VC Volume of the coronary artery (Bio) 0.45 L [3]
c Maximum rate for absorption into heart tissue (Chem) 1 (min)−1 Assumed
K3 Shape parameter for absorption into heart tissue (Chem) 1 mg Assumed
f Fraction of unbound drug in blood plasma (Chem) 1 unitless Assumed
d Dose rate for equation (2.8) (Dose) 60 mg/min Assumed
τ Dose delivery time for (2.8) (Dose) 0.50 min Assumed
D Total dose administered for (2.9) (Dose) 100 mg Assumed
T Dose delivery time for (2.9) (Dose) 0.50 min Assumed

species and then rounded this value to the first significant digit. The parameters that are adjustable and will be interesting
in attempts made to examine different dosing strategies include d, τ , D, and T. In Table 2 the parameters are denoted (Bio),
(Chem), or (Dose) depending onwhether their origin is biological (depending on the organism receiving the drug), chemical
(depending on the properties of the drug) or dose related (depending on dosing strategy).

When building amathematicalmodel, it is important to clearly state all of the assumptions that aremade, and a summary
of those underlying this model is presented next.

(i) In the model represented by Eqs. (2.1)–(2.7), each of the compartments have a constant volume and are well-mixed.
(ii) After injection, typically into a vein leading to the vena cavae, the drug travels from the injection site to the pulmonary

artery, which is the input to the lung, an organ of interest in this work. Enroute to the lung, the distribution of the drug
is affected by dilution with other venous flow comprising the total cardiac output QT , dispersion, mixing, and plasma
binding. Eq. (2.1) accounts for the effective rate of change of the mass of the drug prior to entering the lung. The CU(t)
term represents the unmixed rate of injection of the drug. The term VP represents an effective mixing volume that
accounts for the dispersion and mixing of the drug enroute to the lung [7]. The term QT

VP
in Eq. (2.1) represents the

rate of flow out of the pulmonary artery. An important assumption being made in both representations of CU(t) (Eqs.
(2.8) and (2.9)) is that in the absence of plasma binding (i.e., the fraction of unbound drug in the plasma is 1), the drug
enters the pulmonary artery at the same rate it was injected. It is also assumed that the drug injection does not affect
blood flow; this assumption is valid if the volume of the solution containing the injected drug is small. With respect
to injection of different doses, the current version of the model compares injecting different concentrations of the
drug in a small fixed volume of solution (i.e., the total mass injected is allowed to vary but the volume of the solution
containing the drug does not change). It is also assumed that neither the vena cavae nor the right side of the heart are
affecting the rate at which the drug enters the pulmonary artery.

(iii) Similar to the manner in which the effects of the vena cavae and right side of the heart on the drug flow rate were
ignored, it is assumed that the pulmonary vein and left side of the heart do not affect the flow of the drug.

(iv) The organ compartments corresponding to the heart and lung can each be modeled with two compartments. For each
organ, there is a compartment representing the blood supply to the organ as well as a compartment for the organ
tissue. When modeling organ compartments in physiology, it is common practice to use separate compartments for
the blood and tissue parts [8], and this is the approach we have taken for the two organs in our system.

(v) Eq. (2.2) describes the flow into and out of the blood supply of the lung. The term QT
VP

represents flow into the blood
supply of the lung. The exchange between the MP and ML compartments is analogous to an exchange that occurs in
a connection between two pipes, and we are assuming here that the flow out of the MP compartment is equal to the
flow into theML compartment. The outflow term in the ML compartment contains the parameter VL representing the
volume of the lung, and similar inflow and outflow terms can be found in theMA compartment.

(vi) Although the pulmonary artery, lung, and aortic arch receive the entire blood supply of the body, the coronary artery
only receives a fraction of this supply which is represented by the parameter QC . The inflow and outflow terms in the
MC compartment do not involve the QT parameter but instead involve the parameter QC which is smaller than QT .

(vii) We are left with three nonlinear terms in the model to discuss:

a − aMT (t)
K1 + MT (t)

,
bMT (t)

K2 + MT (t)
, and c − cMH(t)

K3 + MH(t)
,

which represent absorption into the lung tissue, metabolism in the lung tissue, and absorption into the heart tissue,
respectively. The parameters in these terms are heavily dependent upon the particular drug under investigation. The



Author's personal copy

H.T. Banks et al. / Mathematical and Computer Modelling 50 (2009) 959–974 963

Fig. 3. Absorption and metabolic rates in lung as function ofMT for parameter values a = 1, b = 2, K1 = 1, K2 = 1.

first of these terms is found in equations (2.2) and (2.3) and represents the rate at which the drug is absorbed into the
lung tissue from the blood supply to the lung. Here a is a parameter representing the maximum absorption rate into
the lung with units of (time)−1, and K1 dictates how fast the rate of absorption decreases as themass of the drug in the
lung tissue increases. In the second term, bMT (t)

K2+MT (t) , b is a parameter that represents themaximummetabolic rate of the
drug in the lungs, and K2 determines how fast themetabolic rate saturates. It is known that enzyme-mediated binding
and metabolism in the lungs are saturable processes ([9,7]), and these two terms are represented in Briggs–Haldane
Michaelis-Menten form (see [10–13]). Plots of the absorption and metabolic rates as functions of MT are presented
in Fig. 3, and values chosen for the parameters are given in the plot. The curve for the absorption rate in the lung
intersects the vertical axis at a and then approaches zero asMT goes to infinity. The metabolic rate curve starts out at
zero forMT = 0 and then approaches b asMT increases. When the absorption rate curve is greater than the metabolic
rate curve, accumulation in the lung will occur; however, when the metabolic rate curve is greater, there will be a net
loss of drug mass in the lung tissue. The term (c − cMH (t)

K3+MH (t) ) in equations (2.5) and (2.6) represents absorption of the
drug into the heart tissue, and here the form was also chosen so that the absorption process is saturable.

(viii) While it is known that organs can serve as reservoirs that accumulate drug in their tissue and then release the drug
later, this process was omitted in the current version of the model. Because our model is made to study the first-pass
effects of the drug through the heart and lung organs, it is reasonable to ignore the release of tissue-bound drug mass.

3. Numerical results and optimization methodology

Typical model outputsMP(t),ML(t),MT (t),MA(t),MC (t), andMH(t) for the compartments are given in Fig. 4 for different
values of D and T in expression (2.9). In particular, the graphs in Fig. 4 depict trajectories for drug concentrations in various
model compartments in response to three different sets of dosing parameters D and T . The purpose of this section is to also
illustrate the other types of computations that can be performedusing ourmodel. These computations can be used to explore
questions that may be more difficult or more costly to answer experimentally. There are many goals that can be specified
regarding the trajectory of the mass of the drug in the heart and lung. For instance, one may wish to maximize the ratio of
peak mass or total mass of the drug that reaches the lung as compared to the heart. Here we will mathematically formulate
the goal of, given a fixed dose, finding the best delivery time to maximize these ratios. Note that the total circulation time
in humans is about 1 min [6]. Because our model was developed to analyze the first-pass distribution dynamics of a drug, it
is only meaningful to use the model to examine dosage times where the dose will pass from the injection site through the
coronary artery in less than one minute (assuming that total circulation time in humans and sheep is similar). It takes time
for the drug to move between compartments, and so in order to be conservative, only injection times less than or equal to
30 s will be considered here.

Expressions (2.8) and (2.9) are only two possible mathematical representations of the drug injection, and they represent
injecting the drug at a constant rate.Wehave freedom to choose the form for the time-dependent parameter CU(t), and other
injection strategies are considered here to examine how the input function changes the output of the model. One additional
form for the input can be seen in expression (3.1). In a clinical setting, this injection strategy represents constantly increasing
the injection rate to a maximum at t = T/2, and then constantly decreasing the rate back down to zero from t = T/2 to
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(a) Mass of drug in pulmonary artery vs. time. (b) Mass of drug in blood supply to lung vs. time.

(c) Mass of drug in lung tissue vs. time. (d) Mass of drug in ascending aorta vs. time.

(e) Mass of drug in blood supply to heart vs. time. (f) Mass of drug in heart tissue vs. time.

Fig. 4. Model output for parameter values found in Table 2 with varying values of D and T : D = 100, T = .5 (solid line); D = 50, T = .3 (dashed line);
D = 10, T = .1 (dot-dash line).

t = T . Geometrically, the expression represents an isosceles triangle, and the equation was derived using the formula for
the area of a triangle and assuming the maximum height of the triangle occurs at t = T/2. A plot of this input function
(along with the constant rate input function and several other considered input functions) can be seen in Fig. 5.

CU(t) =






4f D
T t
T

if 0 ≤ t ≤ T/2

−4f D
T t

T
+ 4

D
T

if T/2 < t ≤ T
0 if T < t.

(3.1)

Another form for CU(t) is given by expression (3.2); note the addition of two new parameters—namely α, and β . This
function was obtained by transforming a beta distribution (which is usually defined between zero and 1) to be defined for t
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Fig. 5. Comparison of different injection strategies with T = .5 min and D = 100 mg.

between 0 and T and to have the area under the function be D. Using the transformed beta distribution for the input allows
one to examine a large number of shapes for the input function by changing the shape parameters α and β . Visualizations
of the transformed beta distribution input for a few different combinations of α and β are also given in Fig. 5. Mathematical
expressions for two more injection strategies in Fig. 5 named the increasing and decreasing injection rate strategies were
obtained similar to the manner in which the equation for the triangle injection rate strategy was obtained (equations for
these input functions are not written explicitly here). A visualization of how the trajectories for the distribution of the drug
in the heart and lung change for the different injection strategies with D fixed at 100 mg and T fixed at 0.5 min can be seen
in Fig. 6.

CU(t) =





f
D
T

Γ (α + β)

Γ (α)Γ (β)

tα−1

T

(
1 − t

T

)β−1

if 0 ≤ t ≤ T

0 if T < t.
(3.2)

Using well-defined mathematical descriptions of the goal one wishes to achieve with a dosage strategy, one can perform
optimizations on cost functions to find the best strategy. Descriptions of some possible cost functionals are given in
(3.3)–(3.6). When attempting to perform these optimizations, it became clear that the parameter values given in Table 2
cannot be correct. The important dynamics of the distribution of the drug should occur within the total circulation time
as long as the injection time is sufficiently short, and this is not the case when using the parameters given in Table 2. To
mitigate this difficulty and allow demonstration computations for the optimization ideas with the model, the parameter VL
(the volume of the lung) was changed to .25 L and the parameter VC (the volume of the coronary artery) was changed to.01
L; the main purpose of these changes was to cause the drug to move through the system faster.

In (3.3) the objective is to find the dosage time between zero and 15 s that minimizes the ratio of peak drug mass in the
heart to peak drug mass in the lung; this is equivalent to maximizing the ratio of peak mass in the lung to peak mass in
the heart. Using the MATLAB optimization routine fminsearch() with an initial guess of .125 min, it was found that shorter
injection times minimize the functional corresponding to (3.3). Indeed, as the tolerances of the optimization routine were
made more stringent, the optimization routine returned shorter injection times. This suggests that to minimize the ratio of
peak masses, the injection interval should be made as short as possible. This is confirmed in Fig. 7, where a plot of the ratio
of peak masses for different injection strategies is shown. In the plot, one can see that regardless of the injection strategy,
the ratio of peak drug mass in the lung to peak drug mass in the heart is maximized when the injection interval is short.
However, notice that for longer injection times, some injection strategies perform better than others.

The functional in (3.4) corresponds to finding a dosage time between zero and 15 s that minimizes the ratio of total drug
load in the heart to total drug load in the lung over one minute (or equivalently, maximizing the inverse). Interestingly,
completely different results from those above are obtained when using the functional (3.4). It was found that if the goal is to



Author's personal copy

966 H.T. Banks et al. / Mathematical and Computer Modelling 50 (2009) 959–974

Fig. 6. Plots of MT and MH for seven different injection strategies shown in Fig. 5.

Fig. 7. Plot of the ratio of peak drug mass in the lung to peak drug mass in the heart for different dosing strategies and injection times. Injection times
were sampled from .01 to .25 min with a step-size of .01.

maximize the total drug load in the lung to total drug load in the heart, longer injection times should be used.When applying
theMATLAB optimization routine fmincon() tominimize the ratio of total drug load in the heart to total drug load in the lung
with an initial guess of .125 min, the optimization routine returns the constraint on the injection time. For example, when
the injection time is constrained to be less than .25 min as in (3.4), the optimal time returned by the optimization routine is
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Fig. 8. Plot of the ratio of total drug load in the lung to total drug load in the heart over one minute for different dosing strategies and injection times.
Injection times were sampled from .01 to .25 min with a step-size of .01.

.25min. This suggests that tomaximize the ratio of total drug loads in the lung and heart, longer injection intervals do better.
Fig. 8 shows how the total drug load ratio increases as the injection time increases regardless of the injection strategy. Notice
again that the differences between the injection strategies are minimal for small injection times, but the differences grow
as the injection time increases. The differences between the results obtained when using the two different cost functionals
illustrate the importance of clearly defining the goal of the injection for the distribution of the drug throughout the body.

Min
0<T≤.25




Max

t
(MH(t; T ))

Max
t

(MT (t; T ))



 , (3.3)

Min
0<T≤.25

[∫ 1
0 MH(t; T )dt

∫ 1
0 MT (t; T )dt

]

. (3.4)

Optimizations performed in (3.5) and (3.6) are two more examples of the types of investigations that can be considered
when searching for optimal dosing strategies and further illustrate the importance of clearly stating the goal regarding
distribution of the drug during treatment. The cost functional in (3.5) is similar to that in (3.3) in that it corresponds to
maximizing the peak mass of the drug in the lung to that in the heart; however, instead of searching for an optimal dosage
time, T is constrained to be .25, and the objective is to find optimal shape parameters α and β . An analogous relationship
exists between the cost functionals in (3.4) and (3.6)—both representmaximizing the total drug load in the lung as compared
to the heart over the first pass of the drug through the body, but in (3.6) one optimizes the shape of the beta distribution
input function for a fixed dosage time. Here the cost functionals do not involve the effects of changing the dose or the dosage
time; they only examine changing the shape of the input function. When performing the optimizations in (3.5) and (3.6), α
and β are constrained to be greater than or equal to 1, because these values give the input function a unimodal shape for
the optimizations

Min
α,β≥1




Max

t
(MH(t; T = .25, α,β))

Max
t

(MT (t; T = .25, α,β))



 , (3.5)

Min
α,β≥1

[∫ 1
0 MH(t; T = .25, α,β)dt

∫ 1
0 MT (t; T = .25, α,β)dt

]

. (3.6)
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Fig. 9. Plot of constant rate injection strategy with different number of pulses and value of two ratios (peak mass of drug in lung to peak mass of drug in
heart and total drug load in lung to total drug load in heart) as a function of the number of pulses.

Although different results were obtained for optimal dosage times depending on which cost function was being used,
the optimal values for the shape parameters α and β seem to be the same regardless of which ratio is being considered.
Optimizations performed on (3.5) and (3.6) revealed that α, β combinations with β equal to one and α greater than one
perform best. One can see in Fig. 7 that when considering the ratio of peak masses, the beta distribution injection strategy
with α = 3 and β = 1 performs better than the others shown. Also, when considering the ratio of total drug loads in the
heart and lung, the same values of α and β perform well. A plot of the beta distribution rate with these values of α and β is
not shown here, but the input function with these parameters is uniform increasing and convex over the injection interval.

Note that in a clinical setting, it may be difficult or impossible to obtain some of these more complicated shapes for the
injection input. However, this methodology was developed so that it may be applied when longer dosage intervals can be
considered for a multiple-pass model. It should be emphasized that these results are sensitive to the parameters being used
and may change for different parameter values. To obtain realistic predictions, precise parameter values are needed.

The last injection rate strategy examined in this section corresponds to a clinician administering different total amounts
of the drug in a series of pulses—i.e., administering the drug at a constant rate, stopping the administration, re-administering
the drug at a constant rate and so forth for a given number of times. A plot of this injection strategy can be seen in the top of
Fig. 9 for 1 pulse and a total dose of 100 mg, 2 pulses (25 mg per pulse) and total dose of 50 mg, and 3 pulses (11.11 mg per
pulse) and a total dose of 33.33 mg. These different dosing strategies permit consideration of the effects of administering a
dose at a constant rate versus administering half that dose in two equal pulses versus administering 1/3 the original dose in
three equal pulses without changing the total time that the dose is being injected. In the lower graph of Fig. 9 is a plot of the
two different ratios we wish to maximize (peak mass and total load of the drug in the lung as compared to the heart) as a
function of the number of pulses.While these simulations suggest that one can forcemore of a drug to reach the lung relative
to the amount that reaches the heart by administering the drug in a series of pulses, better estimates for the parameters in
the model are needed before these predictions can be taken seriously. Interestingly, this type of dosing strategy has been
investigated by experimentalists, and Seltzer et al., found that they were able to obtain similar therapeutic effects when
administering a drug in a bolus or by a series of pulses [14]. Trajectories of the distribution of the drug in the lung and
heart over time for different numbers of pulses are plotted in Fig. 10. Observe that as the number of pulses increases, the
trajectories for both the heart and lung tissue decrease; however, what is important is that the trajectories for the drug in
the heart decrease faster causing the two ratios to increase as the number of pulses increases.

4. Sensitivity analysis

Sensitivity analysis is an important part of model analysis and validation. Sensitivity functions explicitly show the
relationship between the parameters and the state variables. If model solutions are very sensitive to a particular parameter,
one would want to have a reliable estimate for that parameter, as variations in the value of that parameter will affect the
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Fig. 10. MT andMH for constant rate injection strategy with several different pulsing strategies.

dynamics of solutions. Sensitivity functions are functions of time that describe how a state variable changes with respect to
changes in a parameter. To define these sensitivity functions, we will re-state our model in vector notation.

We may define the p-vector of parameters by

θ = (QT , VP , VL, a, K1, b, K2, VA,QC , VC , c, K3, d), (4.1)

and the n-vector state variable, for a given parameter vector θ and time t, as

x(t; θ) =





MP(t; θ)
ML(t; θ)
MT (t; θ)
MA(t; θ)
MC (t; θ)
MH(t; θ)




, (4.2)

which allows us to write (2.1)–(2.6) in the compact form as

dx
dt

= g(x(t; θ); θ), (4.3)

where the vector function g is defined by the right side of (2.1)–(2.6). This formof the equationswill be used in the sensitivity
analysis.

The sensitivities of the state variables (MP ,ML,MT ,MA,MC ,MH) to the parameters θ = (QT , VP , VL, a, K1, b, K2, VA,QC ,
VC , c, K3, d) were calculated. Our sensitivity analysis is described below, using a derivation obtained from [15].

Differentiating with respect to θ on both sides of (4.3), one obtains

∂

∂θ

dx
dt

= ∂

∂θ
g(x(t; θ); θ), (4.4)

which implies that the n × pmatrix y = ∂x/∂θ satisfies

d
dt

∂x
∂θ

= ∂g
∂x

∂x
∂θ

+ ∂g
∂θ

, (4.5)

or equivalently,

dy
dt

= ∂g
∂x

y + ∂g
∂θ

. (4.6)



Author's personal copy

970 H.T. Banks et al. / Mathematical and Computer Modelling 50 (2009) 959–974

Fig. 11. Sensitivity and relative sensitivity functions forMT (t; θ) to all parameters.

Fig. 12. Sensitivity and relative sensitivity functions forMH (t; θ) to all parameters.

Numerical solutions of the sensitivity functions y = (yij) = (∂xi/∂θj) are calculated by solving (4.3) and (4.6)
simultaneously using θ = θ̃ , where θ̃ denotes a given value for the parameter. In our sensitivity analysis we used the
parameter estimates listed in Table 2 for θ̃ . We note that in order to compute the sensitivity functions the model solutions
are required to be continuous and differentiable with respect to the parameters. Because the equation for CU(t)was defined
as in (2.8), a step function, we were not able to calculate the sensitivity to the dose time τ . However, with a reformulation of
CU(t) as a smooth function of τ , one would be able to obtain sensitivity functions with respect to τ . We have 13 parameters
and 6 state variables, hence computing the sensitivity function involves solving 78 first order differential equations (4.6).
We can numerically solve this system of sensitivities simultaneously with the solutions of our model.

Relative sensitivities can be found using solutions x(t; θ), ∂x(t; θ)/∂θ and parameter estimate θ = θ̂ , by defining

rsij = θ̂j

xi(t; θ̂)

∂xi(t; θ̂)

∂θj
, for i = 1, . . . , n, j = 1, . . . , p. (4.7)
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Fig. 13. Sensitivity and relative sensitivity functions for all states to parameter d.

4.1. Sensitivity results

Figs. 11–13 display some of the sensitivity and relative sensitivity solutions we obtained. The sensitivity functions look
very different from the relative sensitivity functions. The sensitivity functions show the sensitivity of the state variables
to the parameters which include the effect of the magnitude of the parameter estimates we used. However, the relative
sensitivity functions are sensitivities scaled to account for the magnitude of the solutions and parameter estimates. These
sensitivity functions change with time, indicating that a state variable may be sensitive to different sets of parameters
depending on the time it is examined. This is important because if one is interested in the peak of the state solution, one
could investigate to determine the parameters to which themodel solutions aremost sensitive at the time corresponding to
the peak, before the peak, and after the peak. Note that if a sensitivity function for a state variable to a particular parameter
was zero for all time, it was not plotted.

The sign of the sensitivity values corresponds to different effect variations in the parameter will have on the state
variables. If the sensitivity function is positive in some time interval, increasing variations in that parameter, in that time
interval, will cause the state variable to increase, depending on the magnitude of the sensitivity. Similarly, a negative
sensitivity value implies that increasing variations in the parameterwill cause the state variable to decrease. If the sensitivity
function is zero for some time, the state variable is insensitive to that parameter. For example, in Fig. 11 (left) we can see
that the sensitivity functions for MT (t; θ) are strictly positive over the time span for parameters a, VL, and K1, and strictly
negative for VP , b, and QT . Upon close examination, we find that the sensitivity functions for MT (t; θ) are close to zero but
strictly positive for K2 and d.

Figs. 11 and 12 offer a different perspective of our sensitivity analysis results from the results presented in Fig. 13. Figs. 11
and 12 depict the sensitivity functions for the state variables, MT (t, θ) and MH(t, θ), respectively, to all the parameters.
Alternatively, Fig. 13 shows the sensitivities of all the state variables to only one parameter, d. These representations contain
the same information, just organized differently. The representation of our sensitivity results in Fig. 13 is interesting since
d is the dose rate, which is a parameter we have freedom to choose as input into our model. We may want to investigate
how the variations in d will affect our model solutions over different time intervals. This relates to the analysis of different
dosing strategies. For simplicity, we are only considering the constant rate dosing strategy in this sensitivity analysis. From
Figs. 11–13 we conclude that sensitivity functions contain a lot of information that can be represented in different ways to
offer different perspectives in a modeling effort.

At any fixed time, sensitivity functions can be ranked by the parameters towhich given state variables aremost sensitive.
This is essentially what can be seen in Figs. 12 and 13. However it is useful to organize this information more concisely in a
table. Because the relative sensitivity functions were solved for using a numerical differential equation solver, they are each
discretized functions of time:

&f = (f (t0), . . . , f (tN)) ∈ 'N+1
2 ,

where t0, t1, . . . , tN correspond to grid points for the numerical solution of the underlying differential equations (4.3) and
(4.6). In order to rank the relative sensitivities of each state variable to all the parameters, we took the '2-norm of each

relative sensitivity functionwhere the '2-norm is defined as |&f |'2 =
(∑N

i=0 |f (ti)|2
) 1

2 . The results of these relative sensitivity
rankings can be found in Tables 3 and 4.
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Table 3
The '2-norms of relative sensitivities forMP (t; θ), ML(t; θ), MT (t; θ).

θ
∣∣∣ θ̂
MP

∂MP
∂θ

∣∣∣
'2

θ
∣∣∣ θ̂
ML

∂ML
∂θ

∣∣∣
'2

θ
∣∣∣ θ̂
MT

∂MT
∂θ

∣∣∣
'2

VP 52.1480 QT 16.2970 d 7.5154
QT 52.1480 VL 14.3883 a 7.1472
d 9.9500 d 10.2853 QT 3.9814
VL 0 VP 3.1689 VL 3.7544
a 0 a 0.6400 VP 2.8898
K1 0 K1 0.4221 K1 2.6723
b 0 b 0.0083 b 0.1551
K2 0 K2 0.0033 K2 0.0569
VA 0 VA 0 VA 0
QC 0 QC 0 QC 0
VC 0 VC 0 VC 0
c 0 c 0 c 0
K3 0 K3 0 K3 0

Table 4
The '2-norms of relative sensitivities forMA(t; θ),MC (t; θ),MH (t; θ).

θ
∣∣∣ θ̂
MA

∂MA
∂θ

∣∣∣
'2

θ
∣∣∣ θ̂
MC

∂MC
∂θ

∣∣∣
'2

θ
∣∣∣ θ̂
MH

∂MH
∂θ

∣∣∣
'2

QT 16.5474 d 10.4767 d 11.9227
d 10.2690 QT 8.6003 c 10.8097
VA 9.8154 QC 6.5839 QC 8.7471
VL 8.5873 VL 5.3337 VL 7.0754
VP 3.2778 VC 5.1970 QT 6.2522
a 0.6189 VP 3.1814 VP 3.8885
K1 0.4041 VA 2.1467 VC 3.4543
b 0.0077 c 0.8924 VA 2.5388
K2 0.0030 a 0.4575 K3 1.8980
QC 0 K3 0.2946 a 0.4709
VC 0 K1 0.2231 K1 0.1637
c 0 b 0.0024 b 0.0009
K3 0 K2 0.0011 K2 0.0005

From Table 3, we can see that the state variable corresponding to our first compartment, MP(t; θ), is only sensitive
(has a nonzero '2-norm) to the parameters that are found in (2.1)—the model equation derived from mass balance of
that compartment. However, from Tables 3 and 4, the other state variables are sensitive to the parameters found in their
compartmental model equation, and the parameters that appeared in model equations of compartments upstream. The
ranking of these parameters does not seem to follow any pattern corresponding to the flow of our compartments.

Sensitivity analysis is very important for compartmental modeling because it clearly shows the dependence of ourmodel
solutions on the parameter estimates we used. This sensitivity analysis was for the constant rate dosing strategy defined in
(2.8). For a different dosing strategy, new sensitivity functions could readily be calculated.

5. Discussion and future work

Observations of the dynamics of the first pass of a drug through the heart led to this model formulation. Compartments
were defined, and model equations were obtained using mass balance. Using plausible sheep parameter values found in
the literature, we made numerical simulations of our model solutions, and analyzed these solutions for various dosing
strategies. We also examined the sensitivity of our solutions to the parameter estimates we used. The analysis presented
here demonstrates the capabilities of our model, but there is much more work that could be done.

For the purposes of this paper, values for the parameters corresponding to absorption of the drug into the lung (a
and K1), absorption into the heart (c and K3), and metabolism in the lung (b and K2) were assigned arbitrary values. To
obtain more realistic estimates for these parameters specific to a given antibiotic being developed by a pharmaceutical
company, experiments need to be performed. Indicator-dilution studies [16] have been used to quantify uptake of drugs
in the lung, and this method could be used to determine more realistic parameter values for absorption into the lung for
the drug. More precise values for the other parameters in the model also need to be obtained; many of the parameter
values were taken from [3] where the authors obtained these when fitting a model different from ours to data. To obtain
more appropriate values for these parameters, the values should be estimated using true first-pass experimental data in
an appropriate inverse problem formulation. In addition, it is known that the anatomy of the circulatory system has a
lot of interpersonal variability [17]. It would be interesting to compare sensitivity analysis predictions with real data on
how this variability affects the distribution dynamics of the drug. Most of the parameters in the model are specific to
individuals, and clinicians already use knowledge of pharmacokinetic parameters along with the factors that alter them
to design optimal dosage regimens [18]. Experimental data on the variability of the pharmacokinetic parameters along with
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Fig. 14. Iterative modeling process.

the factors that affect these parameters specific to the drug being developed by a pharmaceutical company would help with
making model predictions. Once reasonable model parameters are determined using experimental data for a given drug
and organism, one could carry out meaningful simulations to compare drugs that are efficacious and safe; efficacious but
with questionable safety; and efficacious but clearly unsafe. In addition, one could carry out simulations aimed at dosing
strategies for attaining someminimum concentration in the lung tissue resulting in cure and somemaximum concentration
in heart tissue resulting in no side effects. That is, one could seek a threshold concentration in lungs such that all higher
concentrations are efficacious; and a threshold concentration in the heart such that all lower concentrations are safe.
This knowledge may better inform the drug development process. Finally, sensitivity calculations could be performed to
determine mechanisms and areas of drug metabolism on which development should focus in future research.

It should be noted that the modeling process is iterative and should involve communication and collaboration with
experimentalists. This iterative process is summarized in Fig. 14 and discussed in Chapter 1 of [2]. As the next step of
the modeling process it would be helpful to obtain experimental data to validate our model (step (vi) from Fig. 14). As
part of this process, we also need to carefully formulate the statistical model embedded in our mathematical model.
Validation of the model using experimental data would allow for comparison of our model with the physiological system
we attempted to describe. This most likely will lead to further refinement of our model, and another iteration of the
modeling process. Through the communication that takes place between the mathematicians and the experimentalists in
the iterative modeling process, the model will more accurately describe the physiological system, and can eventually be
used for prediction.
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