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Abstract. Mathematical models are validated against empirical data, while examining potential
indicators for an online video that went viral. We revisit some concepts of infectious disease
modeling (e.g. reproductive number) and we comment on the role of model parameters that
interplay in the spread of innovations. The dataset employed here provides strong evidence that
the number of online views is governed by exponential growth patterns, explaining a common
feature of viral videos.

1. Introduction

In recent years the phrase “it went viral” is commonly coined to denote popularity and visibility
on the internet. It is almost exclusively reserved for videos, but also applies to other documents
that can be navigated online.

An example of a viral video is Gangnam Style, where Korean singer Psy leads choreographies
with equestrian-inspired moves. This video is enhanced by music that is remarkably catchy, along
with multiple colors in scenarios induced by an odd sense of humor. Gangnam Style was uploaded
to YouTube1 on July 15, 2012 and since then it has been viewed 1.9 ⇥ 109 times. This video is
without a doubt the most watched video on YouTube and is also the first to achieve views on the
order of 1 billion [26].

For mathematicians this type of phenomenon is intrinsically associated with one of the most
eloquent functions in mathematics: the exponential function. The same function that connects
some of the best-known mathematical constants (ei⇡ = �1), and one that is typical in describing
phenomena with remarkable growth patterns (such as bacterial growth).

In this article we discuss how something may go viral, from the point of view of mathemati-
cal modeling, with particular emphasis on exponential growth. We revisit some concepts that are
traditionally invoked in models of infectious diseases, such as reproductive number and final epi-
demic size, and we comment on the role played by model parameters that are used to described
propagation.

2. The mathematics of contagion

Infectious diseases become established, in part, due to the mobilization ability of a pathogen that
finds its way from host to host. One may argue this dynamic process bears resemblance with way in
which people may pass on information, from one person to another. The most basic mathematical
model of epidemics, developed in 1927 by Kermack and McKendrick [13], was the inspiration, for
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Daley and Kendall in 1965 [7], to formulate a simple model for the spread of unverified information,
also known as rumors or gossip. Here we derive an adaption of the latter that applies to viewership
of videos posted online.

Suppose we consider a closed population of constant size, in which individuals mix homogeneously
at random. In other words, there is an equal chance for individuals to encounter one another. Let us
focus on a scenario where a new video is posted online and some initial viewers (i.e., early adopters)
take on the quest of making it available to others. This hypothetical new video can be considered
a hip innovation such as Gangnam Style

2, Baby3, Call Me Maybe

4, and Get Lucky

5, which so far
have cumulative number of views with orders of magnitude between 107 and 109. Under such
circumstances the closed population can be divided into three main groups. Naive individuals are
those who have never watched the video, and their size at time t is denoted by u(t). Gladwell [10]
re-defined mavens as individuals who are ahead of the curve in identifying fads (likely to trend)
and who disseminate them with the aid of the so-called connectors. In this model mavens and
connectors are lumped together in a group of size v(t). Mavens (also referred to as spreaders) are
those individuals who have watched the video and are actively involved in promoting viewership by
means of word of mouth, email, social media (e.g. Facebook, Twitter, Google+, Reddit, Tumblr,
Pinterest), etc. The third group is denominated stiflers, denoted by w(t), these are individuals who
stopped being interested in watching the video.

The following nonlinear ordinary di↵erential equations model the time evolution of these three
groups:

du

dt

= �buv(1)

dv

dt

= buv � cv(v + w)(2)

dw

dt

= cv(v + w)(3)

1 = u+ v + w.(4)

The interactions between naive and mavens give rise to more mavens, as suggested by the term
buv in equations (1)–(2), where the parameter b > 0 denotes how such interactions take place,
and is reminiscent of a rate of transmission. Moreover, the loss of mavens is assumed to occur
proportional to the contacts between individuals who already know about the video, such that
repeated encounters with those who have seen it may simply discourage spreaders, as they learn it
is no longer an innovation. Spreaders may feel the video loses appeal once it is perceived as main
stream. The term cv(v + w) denotes the loss of mavens, where the parameter c > 0 is called the
halting rate.

Figure 1 portrays numerical solutions of equations (1)–(3). As expected the naive population
size is monotonically decreasing, while the stifler group increases, an implication of negativity and
positivity in rates of change, clearly evidenced in equations (1) and (3), respectively. The mavens
population size, v(t), is displayed in Figure 1(b) and exhibits the shape of an outbreak curve.

2Total number of views to date 1,891,963,283; http://www.youtube.com/watch?v=9bZkp7q19f0
3Total number of views to date 976,385,021: http://www.youtube.com/watch?v=kffacxfA7G4
4Total number of views to date 527,469,035: http://www.youtube.com/watch?v=fWNaR-rxAic
5Total number of views to date 47,704,256: http://www.youtube.com/watch?v=h5EofwRzit0

http://www.youtube.com/watch?v=9bZkp7q19f0
http://www.youtube.com/watch?v=kffacxfA7G4
http://www.youtube.com/watch?v=fWNaR-rxAic
http://www.youtube.com/watch?v=h5EofwRzit0
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Figure 1. Panel (a): Numerical solutions of equations (1)–(3) versus time. In
Panel (b) the curve v(t) is displayed as a function of time t, where an exponential
growth pattern can be observed, for an initial time interval. Initial conditions and
parameter values: u(0) = 0.99, v(0) = 0.01, w(0) = 0, b = c = 0.1.

3. Final size

The total number of individuals that were at some point mavens can be quantified by solving a
transcendental equation. First, let us divide equation (2) by equation (1) to obtain an expression
for dv/du. Second, using the substitution v+w = 1�u we integrate in both sides over the interval
[t0, t], while assuming u(t0) = 1 and v(t0) = 0, which reduces to

(5) v = (�1)(u� 1)
h
1 +

c

b

i
+

c

b

lnu.

Over the long run the population of mavens vanish while the naive population size approaches a
horizontal asymptote (see Figure 1(a)). Thus, let us assume that limt!1 v(t) = 0 and limt!1 u(t) =
u1. Taking the limit as t ! 1 in both sides of equation (5) yields

(6) u1 = e

�R(1�u1)
,

where R = b/c+1. Solutions to the transcendental equation (6) in closed form cannot be obtained.
However, numerical approximations can be computed, provided that a value for the parameter R is
known. Additionally, it is clear from equation (6) that in the extreme scenario when R is su�ciently
large, i.e., when R ! 1, then u1 ! 0, implying that the entire naive population eventually tran-
sitions into becoming mavens. In the literature of infectious disease modeling, analogous quantities
to R are typically referred to as reproductive numbers [1, 4, 8, 11, 21]. In classic epidemic models
with simple dynamics these reproductive numbers serve as thresholds that separate two main qual-
itative regimes [11]: an outbreak taking place (whenever R > 1) versus not having enough critical
mass to kicko↵ an epidemic (if R < 1).

Let ū denote a solution to equation (6). In view of the conservation of mass assumption given
by equation (4), it then follows that at the end of an outbreak the quantities ū and 1 � ū denote
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Figure 2. Final size 1�ū displayed as a function of R, where ū is a solution to the
transcendental equation (6). Fifty equally spaced values of R are used, such that
1  R  5. Numerical solutions were computed by implementing a root-finding
algorithm.

the fractions of those who never watched the video and those who actively did so, respectively. It
is common to refer to 1� ū as the final size of an outbreak.

Figure 2 portrays numerical solutions of 1 � ū versus R. For each value of R a solution to
equation (6) is computed by implementing an algorithm that finds roots of nonlinear functions6.
Figure 2 illustrates what was previously noted in relation to how ū changes when R surges. More
specifically, as R increases in value the final size approaches unity, i.e., as R ! 5 then 1� ū ! 1.

The model defined by equations (1)–(4) di↵ers from its counterpart epidemic model mainly in
the lack of a dynamic threshold. Because R = b/c + 1 always exceeds unity an outbreak curve is
always guaranteed. In contrast, for a single-outbreak Susceptible-Infective-Recovered (SIR) model
there is a threshold given by the ratio of transmission to recovery rates, say for example, �/�, and
if such threshold is below unity then the infective population decays to zero, while when �/� > 1
then an outbreak curve exists [11]. In the next section we carry out a linearization and elaborate
more on this feature.

4. Exponential growth

The rate of change of the mavens population size can be linearized to elucidate understanding on
the growth patterns at initial times. More concretely, consider equation (2) with the substitution
v + w = 1� u, which is implied by equation (4):

dv

dt

= v [bu� c(1� u)] = cv

✓
b

c

+ 1

◆
u� 1

�
= f(u, v).

The linearization relies on @f/@v when (u, v) ! (1, 0) which becomes b. Thus, the linearization
of dv/dt under the limit (u, v) ! (1, 0) is given by

dv

dt

⇡ bv,

6MATLAB (Mathworks, Inc.) built-in function fzero employs a combination of bisection, secant and inverse
quadratic interpolation methods.
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Figure 3. Number of views (circles) versus time and best-fit regression line for
Gangnam Style video in YouTube. Data and regression line displayed in logarithmic
scale.

which in turn is equivalent to

v(t) ⇡ v(0)ebt.(7)

Equation (7) is an approximation in the so-called invasion limit, i.e., (u, v) ! (1, 0), where the
word invasion finds its roots in the theoretical ecology literature with the context of having a species
invade another species [5, 9, 14, 18, 19, 24]. Here invasion refers to a population that is initially
made of all naive individuals having only an infinitesimal presence of mavens.

The equivalent calculation leading to equation (7) for an SIR model (see Appendix) yields ���,
instead of b. Thus, the faith of the infective population is determined by the positivity or negativity
of � � �. More specifically, when �/� > 1 the infective population initially grows exponentially,
otherwise it is destined to exponential decay. The fact that b > 0 implies a guaranteed exponential
take o↵ is one the main distinctions between a single-outbreak SIR model and the model defined
by equations (1)–(4).

Let us suppose the number of mavens at time t is given by v(t) ⇡ x(t) = Ae

bt, where the
parameter A denotes the initial condition, i.e., A = v(0). Whenever a temporal dataset is available
then it is straightforward to estimate the parameters A and b. It is common to transform the data
and model using a natural logarithm transformation. The model becomes

y(t) = lnx(t) = ↵+ bt,

where ↵ = lnA. A log-transformed dataset {(t1, lnx1), (t2, lnx2), . . . , (tn, lnxn)} can used to com-
pute point-estimates, denoted as ↵̂ and b̂, of the parameters ↵ and b while applying linear regression
formulas (see [22] and Appendix for details).

Viewership data for the music video Gangnam Style, that is, data on the number of views versus
time, were available in the blog known as YouTube Trends [26]. These temporal observations are
displayed in Figure 3 (circles) in logarithmic scale. Moreover, the best-fit regression line y(t) = ↵̂+b̂t
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Figure 4. Longitudinal observations on the number of views of Gangnam Style

are depicted with squares. Best-fit exponential model, defined in equation (7), is
displayed as a gray solid curve. Best-fit outbreak curve, v(t) in equations (1)–(3)
scaled by a total population size N = 7.0 ⇥ 107, appears as a blue dashed curve.
Initial conditions: v(0) = 3.6⇥105/N , u(0) = 1�v(0), w(0) = 0. Model parameter
estimates and standard errors are given in the text.

also appears in Figure 3. Parameter estimates within one standard error7 are:

b̂ = 0.0522± 0.0026(8)

↵̂ = 12.7856± 0.0883(9)

The Pearson correlation coe�cient (see [22] and Appendix) for the data displayed in Figure 3
equals 0.9700, implying a strong correlation between the lnxi’s and ti’s. Moreover, the coe�cient
of determination is then 0.97002 = 0.9409, meaning that 94% of the variability in the data can be
explained by a linear model [22], in other words, a linear model is justifiably well suited. The strong
correlation in the logarithmic scale translates into solid evidence of exponential growth patterns for
the viewership data, in the particular case considered here. In other words, there is strong evidence
that the number of views for Gangnam Style obeys exponential growth. It is precisely this feature
what is commonly associated with the phrase “it went viral”.
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5. The most influential parameter

The same dataset that was used in the previous section, for a linear regression analysis, is now
employed to validate the mathematical model defined by equations (1)–(3). This model is validated
against empirical data by applying ordinary least squares (OLS) methods for inverse problems (see
[3, 6] and references therein for additional details).

The model parameters are the transmission rate b and the halting rate c, and their OLS estimates
are denoted by b̂ and ĉ. The numerical solution to equations (1)–(3) obtained with the parameter
estimates is usually denominated the best-fit solution. Figure 4 displays the temporal data (squares)
and the best-fit solution (dashed curve). The OLS parameter estimates within one standard error
are8

b̂ = 0.0623± 0.0020(10)

ĉ = 0.2102± 0.0413.(11)

Because data is given in raw quantities and not in percentages or fractions, as the mathematical
model was formulated (see equation (4)), it was necessary to also estimate a total population size,
which was used as a scaling factor. For this quantity, only a point estimate (without uncertainty
bounds) was computed, namely, N = 7.0359⇥ 107.

For the sake of comparison, the exponential model defined in equation (7) was also fitted to the
longitudinal dataset. The best-fit exponential solution to equation (7) appears displayed in Figure
4 as a solid curve. The exponential model has two parameters: A = v(0) and b. Estimates plus
minus one standard error for these parameters are given by

Â = 4.3590⇥ 105 ± 4.1370⇥ 104(12)

b̂ = 4.7750⇥ 10�2 ± 1.8510⇥ 10�3
.(13)

Whenever mathematical models are validated against empirical data, it is customary to address
the role that parameters play in state variables. In other words, how variability in model parameters
manifest in the output of the model. One can rule dependence on model parameters by computing
sensitivity functions. For example, let us consider equation (7), where we write x(t) = Ae

bt. The
partial derivatives @x/@A and @x/@b are denominated traditional sensitivity functions [2]. They
are time functions addressing the rate of change with respect to parameter variability. A re-scaled
version of these functions is useful in circumventing issues of magnitude and scale. Define

⌫A(t) =
A

x(t)

@x

@A

(t) ⌘ 1

and

⌫b(t) =
b

x(t)

@x

@b

(t) = bt.

The functions ⌫A(t) and ⌫b(t) are called relative sensitivity functions. For the exponential growth
model, equation (7), both of these functions are linear, one of them with zero slope while the other
one has slope b > 0. On one hand, when the relative sensitivity functions approach zero one
concludes the rate of change with respect to that parameter vanishes, meaning that no dependence
on that parameter exists. On the other hand, whenever the relative sensitivity functions are away
from zero, then monotonic dependence on the parameters can be ruled in consistency with the

7The bulit-in function nls of the open-source statistical package R was implemented to compute standard errors.
8Numerical solutions of OLS inverse problems can obtained with implementations in MATLAB that include the

Global Optimization toolbox. Built-in functions ga and patternsearch were employed here.
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Figure 5. Relative sensitivity functions with respect to model parameters b and
c, versus time.

sign: negativity would imply decreasing dependence, while positivity would suggest increasing
dependence. More specifically, the exponential growth model has ⌫A(t) > 0 and ⌫b(t) > 0 implying
that x(t) increases when A and b increase. Furthermore, if t > 1/b then ⌫b(t) > ⌫A(t), meaning
that b is the most influential parameter in x(t).

Relative sensitivity functions cannot be computed in analytic form for the state variables of
equations (1)–(3). Because this is a nonlinear system for which closed form solutions are not
available. Instead numerical solutions can be computed by using the parameter estimates to solve
an extended system that includes auxiliary equations. The latter equations are known as the
forward sensitivity equations, where the state variables of the original system act as time-dependent
coe�cients for a linear (auxiliary) system, with unknowns equal to the partial derivatives of the
state variables with respect to model parameters. For additional details in numerical solutions of
forward sensitivity equations, the reader is referred to [2, 3, 6] and references therein.

Let us define the relative sensitivity functions for the mavens population size v(t), from equations
(1)–(3), as follows:

�b(t) =
b

v(t)

@v

@b

(t)

and

�c(t) =
c

v(t)

@v

@c

,
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where @v/@b and @v/@c are computed numerically. Figure 5 displays �b(t) (solid curve) and �c(t)
(dashed curve) versus t. It is clear from Figure 5 that for t 2 [0, 30] we have that �c(t) ⇡ 0, implying
the halting rate c does not influence v(t) over this initial time interval. The model parameters play
an expected role for 30  t  83 where v(t) increases with the transmission rate b (because
�b(t) > 0) and v(t) decreases with the halting rate c (due to �c(t) < 0). Surprisingly, the role of
parameter b is reversed when t > 83, in the sense that �b(t) < 0. Furthermore, towards the end of
the outbreak, as t ! 200, we have that �b(t) < �c(t) < 0, suggesting that b is more influential than
c in the ending phase, because �b(t) is farthest away from zero. In summary, the transmission rate
b is the most influential parameter.

We also note that having �c(t) ⇡ 0 and �b(t) > 0 for 0  t  30, also confirms that during
this time interval the curve v(t) is only influenced by the transmission parameter b, but it is also
heavily dominated by exponential growth. The latter is confirmed in Figure 4 by comparing the
best-fit curves (solid versus dashed), where reasonable agreement with the pattern displayed by the
longitudinal data is observed for t 2 [0, 30]. Temporal patterns of exponential growth are, to the
best of our knowledge, footprints of going viral.

6. Final remarks

The website known as YouTube was launched in early 2005 with the innovative goal of providing
a user-friendly means to share videos. Over nearly a decade, it is clear this website is revolutionizing
online video streaming. A technology that is replacing video stores by online rentals (e.g. Amazon
Instant Video, Netflix).

In the context of our contemporary era of social networking sites, powered by digital media,
traditional terms in epidemiology of communicable diseases (such as transmissibility, reproductive
number, final size, etc) find new meanings, when viewed through the lens of marketing and digital
strategy. In reverse sense of what we would aim with infectious diseases (most e↵orts target erad-
ication), digital media would intend to establish trends. More importantly, it is of great interest
to determine what factors (e.g. age group, demographics, education level, gender, etc) would favor
the likelihood of establishment. Mathematical, statistical and computational methods (e.g. data
science and predictive modeling) are merging together to address questions in the latter context,
however the challenge remains paramount.

In this paper, we have revisited a mathematical model proposed by Daley and Kendall [7], in
the context of rumor propagation by word of mouth. Most of the active development of theory
centered around this model relates to stochastic modeling [12, 15, 16, 17, 20, 23, 25, 27], including
explorations of social landscapes equivalent to complex heterogeneous networks. However, to the
best of our knowledge, most of this theoretical work remains yet to be validated against empirical
data.

In this study we were successful in validating Daley-Kendall’s model against longitudinal obser-
vations. Nevertheless, the parameter estimates must be considered with a degree a caution, because
they only constitute first order approximations conditional on the dataset. The longitudinal counts
on the number of views of Gangnam Style are aggregate, as they inevitably include repeated counts
from individuals who watched the video more than once. The model parameter estimates and their
uncertainty bounds, can only be accepted by making the simplifying assumption that the viewership
data approximate the actual number of mavens at each time point.

More important than the estimated parameter values is how the process of dissemination is
readily verified with simple mathematical models. A contagion model, equations (1)–(4), can
successfully describe the surge and fall of mavens, as it is clearly seen in Figure 4. A better
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dataset to validate a contagion model would include observations at the peak and in the downfall
phase of the outbreak curve, not just at the beginning.

A central point for our analysis here is to articulate in mathematical terms what it means when
a video “went viral”. Figures 3 & 4 confirm that to go viral is the equivalent of exponential growth.
More specifically, we find that strong positive correlation (with a Pearson coe�cient of 0.97) in
logarithmic scale is an indicator of exponentially growing patterns. The transmission rate b denotes
the ability to promote viewership, and it is the most influential parameter for both the contagion
and the exponential models. One of the features of exponentially growing processes is that they can
easily climb up orders of magnitude within a short time window, a feature that is well documented
for viral videos. For example, Gangnam Style has views jumping from order 105 (on day 0) to 106

(on day 20).
On a closing note, mathematicians can only hope that some their publications in peer-reviewed

journals “went viral”. Perhaps the closest metric of such degree of visibility is the number of
citations. This author would be thrilled if any of his publications are ever cited with order of
magnitude 102. But yet it is still a long way to go, because his most cited paper has to date 71
citations (according to Web of Knowledge9), and when considered over a period of 8 years, it leaves
much to be desired.
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7. Appendix

SIR Model. A single outbreak Susceptible-Infective-Recovered model is defined by the nonlin-
ear system of equations (see [11] and references therein for additional details):

ds

dt

= ��si

di

dt

= �si� �i

dr

dt

= �i

1 = s+ i+ r,

where the epidemic parameters are � and �. A linearization of the infectives equation, around s = 1
and i = 0, yields

di

dt

⇡ (� � �)i,

which implies,

i(t) ⇡ i(0)e(���)t
.

Linear Regression. Given the observations (t1, lnx1), (t2, lnx2), . . . , (tn, lnxn), then point-
estimates for the parameters of the linear model

y(t) = lnx(t) = ↵+ bt,

are computed as follows [22]:

b̂ =

Pn
i=1 (ti � t̄ ) (lnxi � ȳ)

Pn
i=1 (ti � t̄ )2

↵̂ = ȳ � b̂t̄

http://youtube-trends.blogspot.com/2012/09/gangnam-style-vs-call-me-maybe.html
http://youtube-trends.blogspot.com/2012/09/gangnam-style-vs-call-me-maybe.html
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where

t̄ =
1

n

nX

i=1

ti

and

ȳ =
1

n

nX

i=1

lnxi.

The sample standard deviations for the ti’s and lnxi’s are denoted by st and sy, respectively,
and are computed using the sample averages t̄ and ȳ, namely [22]:

st =

sPn
i=1(ti � t̄)2

n� 1
and sy =

sPn
i=1(lnxi � ȳ)2

n� 1
.

The Pearson correlation coe�cient is defined in terms of the sample average and sample standard
deviation [22]:

1

n� 1

nX

i=1

✓
ti � t̄

st

◆✓
lnxi � ȳ

sy

◆
.
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