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Abstract

We consider a single outbreak Susceptible-Infected-Recovered (SIR) model and correspond-

ing estimation procedures for the corresponding effective reproduction number R(t). We discuss

the estimation of the underlying SIR parameters with both ordinary least squares (OLS) and

generalized least squares (GLS) estimation techniques. We do this in the context of appropri-

ate statistical models for the measurement process. We use asymptotic statistical theories to

derive the mean and variance of the limiting (Gaussian) sampling distribution and to perform

post statistical analysis of the inverse problems. We illustrate the ideas and pitfalls (e.g., large

condition numbers on the corresponding Fisher information matrix) with both synthetic and

influenza incidence data sets.

1 Introduction

The transmissibility of an infection can be quantified by its basic reproductive number, R0, de-

fined as the mean number of secondary infections seeded by a typical infective into a completely

susceptible (naive) host population [1, 14, 20]. For many simple epidemic processes, this parameter

determines a threshold: whenever R0 > 1, a typical infective gives rise to more than one secondary

infection, leading to an epidemic. In contrast, when R0 < 1, infectives typically give rise to less

than one secondary infection and the prevalence of infection cannot increase.
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Due to the natural history of some infections, transmissibility is better quantified by the effective—

rather than the basic—reproductive number. For instance, exposure to influenza in previous years

confers some cross-immunity [11, 17, 25]; the strength of this protection depends on the antigenic

similarity between the current year’s strain of influenza and earlier ones. Consequently, the pop-

ulation is non-naive and so it is more appropriate to consider the effective reproductive number,

R(t), a time-dependent quantity that accounts for the population’s reduced susceptibility.

Our goal is to develop a methodology for the estimation of R(t) that also provides a measure of the

uncertainty in the estimates. We apply the proposed methodology in the context of annual influenza

outbreaks, focusing on data for influenza A (H3N2) viruses, which were, with the exception of the

influenza seasons 2000-1 and 2002-3, the dominant flu subtype in the US over the period from 1997

to 2005 [9, 29].

The estimation of reproductive numbers is typically an indirect process because some of the pa-

rameters on which these numbers depend are difficult, if not impossible, to quantify directly. A

commonly used indirect approach involves fitting a model to some epidemiological data, providing

estimates of the required parameters.

In this study we estimate the effective reproductive number by fitting a deterministic epidemio-

logical model employing either an Ordinary Least-Squares (OLS) or a Generalized Least-Squares

(GLS) estimation scheme to obtain estimates of model parameters. Statistical asymptotic theory

[13, 27] and sensitivity analysis [12, 26] are then applied to give approximate sampling distributions

for the estimated parameters. Uncertainty in the estimates of R(t) is then quantified by drawing

parameters from these sampling distributions, simulating the corresponding deterministic model

and then calculating effective reproductive numbers. In this way, the sampling distribution of the

effective reproductive number is constructed at any desired time point.

The statistical methodology provides a framework within which the adequacy of the parameter

estimates can be formally assessed for a given data set. We shall present instances in which the

fitted model appears to provide an adequate fit to a given data set but where the statistics reveal

that the parameter estimates have very high levels of uncertainty. We also discuss situations in
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Table 1: Number of tested specimens and influenza isolates during several annual outbreaks in the
US [9].

Season Total number of Number of A(H1N1) & Number of Number of
tested specimens A(H1N2) isolates A(H3N2) isolates B isolates

1997-1998 99,072 6 3,241 102
1998-1999 102,105 30 2,607 3,370
1999-2000 92,403 132 3,640 77
2000-2001 88,598 2,061 66 4,625
2001-2002 100,815 87 4,420 1,965
2002-2003 97,649 2,228 942 4,768
2003-2004 130,577 2 7,189 249
2004-2005 157,759 18 5,801 5,799

Mean 108,622 571 3,488 2,619

which the fitted model appears, at least visually, to provide an adequate fit and where the statistics

suggest that the uncertainty in the parameters is not so large but that, in reality, a poor fit has been

achieved. We discuss the use of residuals plots as a diagnostic for this outcome, which highlights

the problems that arise when the assumptions of the statistical model underlying the estimation

framework are violated.

This manuscript is organized as follows: In Section 2 the data sets are introduced. A single-

outbreak deterministic model is introduced in Section 3. Section 4 introduces the least squares

estimation methodology used to estimate values for the parameters and quantify the uncertainty

in these estimates. Our methodology for obtaining estimates of R(t) and its uncertainty is also

described. Use of these schemes is illustrated in Section 5, in which they are applied to synthetic

data sets. Section 6 applies the estimation machinery to the influenza incidence data sets. We

conclude with a discussion of the methodologies and their application to the data sets.

2 Longitudinal Incidence Data

Influenza is one of the most significant infectious diseases of humans, as witnessed by the 1918

“Spanish Flu” pandemic, during which 20 to 40 percent of the worldwide population became
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Figure 1: Influenza isolates reported by the CDC in the US during the 1999-2000 season [9]. The
number of H3N2 cases (isolates) is displayed as a function of time. Time is measured as the number
of weeks since the start of the year’s flu season. For the 1999-2000 flu season, week number one
corresponds to the fortieth week of the year, falling in October.

infected. At least 50 million deaths resulted, with 675,000 of these occurring in the US [30]. The

impact of flu is still significant during inter-pandemic periods: the Centers for Disease Control and

Prevention (CDC) estimate that between 5 and 20 percent of the US population becomes infected

annually [9]. These annual flu outbreaks lead to an average of 200,000 hospitalizations (mostly

involving young children and the elderly) and mortality that ranges between about 900 and 13,000

deaths per year [29].

The Influenza Division of the CDC reports weekly information on influenza activity in the US from

calendar week 40 in October through week 20 in May [9], the period referred to as the influenza

season. Because the influenza virus exhibits a high degree of genetic variability, data is not only

collected on the number of cases but also on the types of influenza viruses that are circulating.

A sample of viruses isolated from patients undergoes antigenic characterization, with the type,

subtype and, in some instances, the strain of the virus being reported [9].

The CDC acknowledges that, while these reports may help in mapping influenza activity (whether
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or not it is increasing or decreasing) throughout the US, they do not provide enough information

to calculate how many people became ill with influenza during a given season. The CDC’s caution

likely reflects the uncertainty associated with the sampling process that gives rise to the tested

isolates, in particular that this process is not sufficiently standardized across space and time. We

return to discuss this point later in this paper.

Despite the cautionary remarks by the CDC we use these isolate reports as illustrative data sets to

which we can apply our proposed estimation methodologies. Interpretation of the results, however,

should be mindful of the issues associated with the data. The total number of tested specimens

and isolates through various seasons are summarized in Table 1. It is observed that H3N2 viruses

predominated in most seasons with the exception of 2000-1 and 2002-3. Consequently, we focus

our attention on the H3N2 subtype. Figure 1 depicts the number of H3N2 isolates reported over

the 1999-2000 influenza season.

3 Deterministic Single-Outbreak SIR Model

The model that we use is the standard Susceptible-Infective-Recovered (SIR) model (see, for ex-

ample, [1, 6]). The state variables S(t), I(t), and R(t) denote the number of people who are

susceptible, infective, and recovered, respectively, at time t. It is assumed that newly infected

individuals immediately become infectious and that recovered individuals acquire permanent im-

munity. The influenza season, lasting nearly 32 weeks [9], is short compared to the average lifespan,

so we ignore demographic processes (births and deaths) as well as disease-induced fatalities and

assume that the total population size remains constant. The model is given by the following set of

nonlinear differential equations

dS

dt
= −βS

I

N
(1)

dI

dt
= βS

I

N
− γI (2)

dR

dt
= γI. (3)
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Here, β is the transmission parameter and γ is the (per-capita) rate of recovery, the reciprocal

of which gives the average duration of infection. Notice that one of the differential equations is

redundant because the three compartments sum to the constant population size: S(t)+I(t)+R(t) =

N . We choose to track S(t) and I(t). The initial conditions of these state variables are denoted by

S(t0) = S0 and I(t0) = I0.

The equation for the infective population (2) can be rewritten as

dI

dt
= γ(R(t)− 1)I, (4)

where R(t) = S(t)
N R0 and R0 = β/γ. R(t) is known as the effective reproductive number, while R0

is known as the basic reproductive number. We have that R(t) ≤ R0, with the upper bound—the

basic reproductive number—only being achieved when the entire population is susceptible.

We note that R(t) is the product of the per-infective rate at which new infections arise and the

average duration of infection, and so the effective reproductive number gives the average number

of secondary infections caused by a single infective, at a given susceptible fraction. The prevalence

of infection increases or decreases according to whether R(t) is greater than or less than one,

respectively. Because there is no replenishment of the susceptible pool in this SIR model, R(t)

decreases over the course of an outbreak as susceptible individuals become infected.

4 Estimation Schemes

In order to calculate R(t), it is necessary to know the two epidemiological parameters β and γ,

as well as the number of susceptibles, S(t), and the population size, N . As mentioned before,

difficulties in the direct estimation of β—whose value reflects the rate at which contacts occur

in the population and the probability of transmission occurring when a susceptible and infective

meet—and direct estimation of S(t) preclude direct estimation of R(t). As a result, we adopt

an indirect approach, which proceeds by first finding the parameter set for which the model has

the best agreement with the data and then calculating R(t) by using these parameters and the
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model-predicted time course of S(t). Simulation of the model also requires knowledge of the initial

values, S0 and I0, which must also be estimated.

Although the model is framed in terms of the prevalence of infection I(t), the time-series data

provides information on the weekly incidence of infection, which, in terms of the model, is given by

the integral of the rate at which new infections arise over the week:
∫

βS(t)I(t)/N dt. We notice

that the parameters β and N only appear (both in the model and in the expression for incidence)

as the ratio β/N , precluding their separate estimation. Consequently we need only estimate the

value of this ratio, which we call β̃ = β/N .

We employ inverse problem methodology to obtain estimates of the vector θ = (S0, I0, β̃, γ) ∈ Rp =

R4 by minimizing the difference between the model predictions and the observed data, according

to two related but distinct least squares criteria, ordinary least squares (OLS) and generalized least

squares (GLS). In what follows, we refer to θ as the parameter vector, or simply the parameter,

in the inverse problem, even though some of its components are initial conditions, rather than

parameters, of the underlying dynamic model.

4.1 Ordinary Least Squares (OLS) Estimation

The least squares estimation methodology is based on the mathematical model as well as a statistical

model for the observation process (referred to as the case counting process). It is assumed that

our known model, together with a particular choice of parameters— the “true” parameter vector,

written as θ0—exactly describes the epidemic process, but that the n observations, Yj , are affected

by random deviations (e.g., measurement errors) from this underlying process. More precisely, it

is assumed that

Yj = z(tj ; θ0) + εj for j = 1, . . . , n (5)
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where z(tj ; θ0) denotes the weekly incidence given by the model under the true parameter, θ0, and

is defined by the following integral:

z(tj ; θ0) =
∫ tj

tj−1

β̃S(t; θ0)I(t; θ0) dt. (6)

Here, t0 denotes the time at which the epidemic observation process started and the weekly obser-

vation time points are written as t1 < . . . < tn.

The errors, εj , are assumed to be independent and identically distributed (i.i.d.) random variables

with zero mean (E[εj ] = 0), representing measurement error as well as other phenomena that cause

the observations to deviate from the model predictions z(tj ; θ0). The i.i.d. assumption means

that the errors are uncorrelated across time and that each has identical variance, which we write

as var(εj) = σ2
0. It is assumed that σ2

0 is finite. We make no further assumptions about the

distribution of the errors: in particular, we do not assume that they are normally distributed. It is

immediately clear that we have E[Yj ] = z(tj ; θ0) and var(Yj) = σ2
0: in particular, this variance is

longitudinally constant (i.e, across the time points).

For a given set of observations Y = (Y1, . . . , Yn), we define the estimator θOLS as follows:

θOLS(Y ) = θn
OLS(Y ) = arg min

θ∈Θ

n∑
j=1

[Yj − z(tj ; θ)]
2 . (7)

Here Θ represents the feasible region for the parameter values. (We discuss this region in more

detail later.) This estimator is a random variable (note that εj = Yj−z(tj ; θ0) is a random variable)

that involves minimizing the distance between the data and the model prediction. We note that

all of the observations are treated as having equal importance in the OLS formulation.

If {yj}n
j=1 is a realization of the case counting (random) process {Yj}n

j=1, we define the cost function

by

J(θ) =
n∑

j=1

[yj − z(tj ; θ)]
2 (8)
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and observe that the solution of

θ̂OLS = θ̂n
OLS = arg min

θ∈Θ
J(θ) (9)

provides a realization of the random variable θOLS .

The optimization problem in Equation (9) can, in principle, be solved by a wide variety of algo-

rithms. The results discussed in this paper were obtained by using a direct search method, the

Nelder-Mead simplex algorithm, as discussed by [22], employing the implementation provided by

the MATLAB (The Mathworks, Inc.) routine fminsearch.

Because var(εj) = E(ε2j ) = σ2
0, the true variance satisfies

σ2
0 =

1
n

E

 n∑
j=1

[Yj − z(tj ; θ0)]
2

 . (10)

Because we do not know θ0, we base our estimate of the error variance on an equation of this form,

but instead of using θ0 we use the estimated parameter vector, θ̂OLS . The right side of Equation

(10) is then equal to J(θ̂OLS)/n. This estimate, however, is biased and so instead the following

bias-adjusted estimate is used

σ̂2
OLS =

1
n− 4

J(θ̂OLS). (11)

Here the n− 4 arises because p = 4 parameters have been estimated from the data.

Even though the distribution of the errors is not specified, asymptotic theory can be used to describe

the distribution of the random variable θOLS [3, 27]. Provided that a number of regularity conditions

as well as sampling conditions are met (see [27] for details), it can be shown that, asymptotically

(i.e., as n →∞), θOLS is distributed according to the following multivariate normal distribution:

θOLS = θn
OLS ∼ N4 (θ0,Σn

0 ) , (12)

where Σn
0 = n−1σ2

0Ω
−1
0 and

Ω0 = lim
n→∞

1
n

χ(θ0, n)T χ(θ0, n). (13)
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We remark that the theory requires that this limit exists and that the matrix Ω0 be non-singular.

The matrix Σn
0 is the 4× 4 covariance matrix, whose entries equal cov ((θOLS)i, (θOLS)j), and the

n× 4 matrix χ(θ0, n) is the sensitivity matrix of the system, as defined and discussed below.

In general, θ0, σ2
0, and Σn

0 are unknown, so these quantities are approximated by the estimates

θ̂OLS and σ̂2
OLS , and the following matrix

Σn
0 ≈ Σ̂n

OLS = σ̂2
OLS

[
χ(θ̂OLS , n)T χ(θ̂OLS , n)

]−1
. (14)

Consequently, for large n, we have approximately that

θOLS = θn
OLS ∼ N4

(
θ̂OLS , σ̂2

OLS

[
χ(θ̂OLS , n)T χ(θ̂OLS , n)

]−1
)

. (15)

We obtain the standard error for the i-th element of θ̂OLS by calculating
√(

Σ̂n
OLS

)
ii
.

The n × 4 matrices χ(θ, n) that appear in the above formulae are called sensitivity matrices and

are defined by

χji(θ, n) =
∂z(tj ; θ)

∂θi
, 1 ≤ j ≤ n, 1 ≤ i ≤ 4. (16)

The sensitivity matrix denotes the variation of the model output with respect to the parameter, and,

for this model-based dynamical system, can be obtained using standard theory [2, 12, 16, 19, 21, 26].

The entries of the j-th row of χ(θ, n) denote how the weekly incidence at time tj changes in response

to changes in the parameter (i.e., in either S0, I0, β̃, or γ) and these can be calculated by

∂z

∂S0
(tj ; θ) = β̃

∫ tj

tj−1

[
I(t; θ)

∂S

∂S0
(t; θ) + S(t; θ)

∂I

∂S0
(t; θ)

]
dt (17)

∂z

∂I0
(tj ; θ) = β̃

∫ tj

tj−1

[
I(t; θ)

∂S

∂I0
(t; θ) + S(t; θ)

∂I

∂I0
(t; θ)

]
dt (18)

∂z

∂β̃
(tj ; θ) =

∫ tj

tj−1

[
S(t; θ)I(t; θ) + β̃

(
I(t; θ)

∂S

∂β̃
(t; θ) + S(t; θ)

∂I

∂β̃
(t; θ)

)]
dt (19)

∂z

∂γ
(tj ; θ) = β̃

∫ tj

tj−1

[
I(t; θ)

∂S

∂γ
(t; θ) + S(t; θ)

∂I

∂γ
(t; θ)

]
dt. (20)
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We see that these expressions involve the partial derivatives of the state variables, S(t; θ) and I(t; θ),

with respect to the parameters. Analytic forms of the sensitivities are not available because the

state variables are the solutions of a nonlinear system; instead, they are calculated numerically.

In order to outline how these numerical sensitivities may be found, we introduce the notation

x(t; θ) = (S(t; θ), I(t; θ)) and denote by g = (g1, g2) the vector function whose entries are given by

the expressions on the right sides of Equations (1) and (2). Then we can write the single-outbreak

SIR model in the general vector form

dx

dt
(t; θ) = g(x(t; θ); θ) (21)

x(0; θ) = (θ1, θ2). (22)

Because the function g is differentiable (in both t and θ), taking the partial derivatives ∂/∂θ of

both sides of Equation (21) we obtain the differential equation

d

dt

∂x

∂θ
=

∂g

∂x

∂x

∂θ
+

∂g

∂θ
. (23)

Here ∂g/∂x is a 2-by-2 matrix, ∂g/∂θ is a 2-by-4 matrix, and ∂x/∂θ is the 2-by-4 matrix

∂x

∂θ
=

 ∂S
∂S0

∂S
∂I0

∂S
∂β̃

∂S
∂γ

∂I
∂S0

∂I
∂I0

∂I
∂β̃

∂I
∂γ

 . (24)

Numerical values of the sensitivities are calculated by solving (21) and (23) simultaneously. We

define φ(t) = ∂x
∂θ (t; θ), let the parameter be evaluated at the estimate, θ = θ̂, and solve the following

differential equations from t = 0 to t = tn

d

dt
x(t) = g(x(t; θ̂); θ̂) (25)

d

dt
φ(t) =

∂g

∂x
φ(t) +

∂g

∂θ
(26)

x(0) = (θ̂1, θ̂2) (27)
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φ(0) =

 1 0 0 0

0 1 0 0

 . (28)

4.2 Generalized Least Squares (GLS) Estimation

The errors in the statistical model defined by Equation (5) were assumed to have constant variance,

which may not be an appropriate assumption for all data sets. One alternative statistical model

that can account for more complex error structure in the case counting process is the following

Yj = z(tj ; θ0) (1 + εj) . (29)

As before, it is assumed the εj are i.i.d. random variables with E(εj) = 0 and var(εj) = σ2
0 < ∞,

but no further assumptions are made. Under these assumptions, the observation mean is again equal

to the model prediction, E[Yj ] = z(tj ; θ0), while the variance in the observations is a function of

the time point, with var(Yj) = σ2
0z

2(tj ; θ0). In particular, this variance is non-constant and model-

dependent. One situation in which this error structure may be appropriate is when observation

errors scale with the size of the measurement (so-called relative noise).

Given a set of observations Y = (Y1, . . . , Yn), the estimator θGLS = θGLS(Y ) is defined as the

solution of the normal equations

n∑
j=1

wj [Yj − z(tj ; θ)]∇θz(tj ; θ) = 0, (30)

where the wj are a set of non-negative weights [13]. Unlike the ordinary least squares formulation,

this definition assigns different levels of influence, described by the weights, to the different obser-

vations in the cost function. For the error structure described above in Equation (29), the weights

are taken to be inversely proportional to the square of the predicted incidence: wj = 1/[z(tj ; θ)]2.

We shall also consider weights taken to be proportional to the reciprocal of the predicted incidence;

these correspond to assuming that the variance in the observations is proportional to the value of

the model (as opposed to its square).
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Suppose {yj}n
j=1 is a realization of the case counting process {Yj}n

j=1 and define the function L(θ)

as

L(θ) =
n∑

j=1

wj [yj − z(tj ; θ)]
2 (31)

The quantity θGLS is a random variable and a realization of it, denoted by θ̂GLS , is obtained by

solving
n∑

j=1

wj [yj − z(tj ; θ)]∇θz(tj ; θ) = 0, (32)

In the limit as n →∞, the GLS estimator θGLS has the following asymptotic properties [3, 13]:

θGLS = θn
GLS ∼ N4(θ0,Σn

0 ) (33)

where

Σn
0 ≈ σ2

0

[
χ(θ0, n)T W (θ0)χ(θ0, n)

]−1
. (34)

Here W (θ0) = diag(w1(θ0), . . . , wn(θ0)) with wj(θ0) = 1/[z(tj ; θ0)]2. The sensitivity matrix χ(θ0, n)

is as defined in Section 4.1.

Because θ0 and σ2
0 are unknown, the estimate θ̂GLS is used to calculate approximations of σ2

0 and

the covariance matrix Σn
0 by

σ2
0 ≈ σ̂2

GLS =
1

n− 4
L(θ̂GLS) (35)

Σn
0 ≈ Σ̂n

GLS = σ̂2
GLS

[
χ(θ̂GLS , n)T W (θ̂GLS)χ(θ̂GLS , n)

]−1
. (36)

As before, the standard errors for θ̂GLS can be approximated by taking the square roots of the

diagonal elements of the covariance matrix Σ̂n
GLS .

The cost function used in GLS estimation involves weights whose values depend on the values of

the fitted model. These values are not known before carrying out the estimation procedure and

consequently GLS estimation is implemented as an iterative process. An OLS is first performed on

the data, and the resulting model values provide an initial set of weights. A weighted least squares

fit is then performed using these weights, obtaining updated model values and hence an updated

set of weights. The weighted least squares process is repeated until some convergence criterion is

14



satisfied, such as successive values of the estimates being deemed to be sufficiently close to each

other. The process can be summarized as follows

1. Estimate θ̂GLS by θ̂(0) using the OLS Equation (9). Set k = 0;

2. Form the weights ŵj = 1/[z(tj ; θ̂(k))]2;

3. Define L(θ) =
∑n

j=1 ŵj [yj − z(tj ; θ)]2. Re-estimate θ̂GLS by solving

θ̂(k+1) = arg min
θ∈Θ

L(θ)

to obtain the k + 1 estimate θ̂(k+1) for θ̂GLS ;

4. Set k = k + 1 and return to 2. Terminate the procedure when successive estimates for θ̂GLS

are sufficiently close to each other.

The convergence of this procedure is discussed in [7, 13].

4.3 Estimation of the Effective Reproductive Number

Let the pair (θ̂, Σ̂) denote the parameter estimate and covariance matrix obtained with either the

OLS or GLS methodology from a given realization {yj}n
j=1 of the case counting process. Simulation

of the SIR model then allows the time course of the susceptible population, S(t; θ̂), to be generated.

The time course of the effective reproductive number can then be calculated asR(t; θ̂) = S(t; θ̂)ˆ̃β/γ̂.

This trajectory is our central estimate of R(t).

The uncertainty in the resulting estimate ofR(t) can be assessed by repeated sampling of parameter

vectors from the corresponding sampling distribution obtained from the asymptotic theory, and

applying the above methodology to calculate theR(t) trajectory that results each time. To generate

m such sample trajectories, we sample m parameter vectors, θ(k), from the 4-multivariate normal

distribution N4(θ̂, Σ̂). We require that each θ(k) lie within our feasible region, Θ. If this is not

the case, then we resample until θ(k) ∈ Θ. Numerical solution of the SIR model using θ(k) allows
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the sample trajectory R(t; θ(k)) to be calculated. Below, we summarize these steps involved in the

construction of the sampling distribution of the effective reproductive number:

1. Set k = 1;

2. Obtain the k-th parameter sample from the 4-multivariate normal distribution:

θ(k) ∼ N4(θ̂, Σ̂);

3. If θ(k) /∈ Θ (constraints are not satisfied) return to 2. Otherwise go to 4;

4. Using θ = θ(k) find numerical solutions, denoted by
(
S(t; θ(k)), I(t; θ(k))

)
, to the nonlinear

system defined by Equations (1) and (2). Construct the effective reproductive number as

follows:

R(t; θ(k)) = S(t; θ(k))
β̃(k)

γ(k)

where θ(k) =
(
S

(k)
0 , I

(k)
0 , β̃(k), γ(k)

)
;

5. Set k = k + 1. If k > m then terminate, otherwise return to 2.

Uncertainty estimates for R(t) are calculated by finding appropriate percentiles of the distribution

of the R(t) samples.

5 Estimation Schemes Applied to Synthetic Data

5.1 Synthetic Data with Constant Variance Noise

We illustrate the OLS methodology and investigate its performance using synthetic data. A true

parameter θ0 is chosen and a set of synthetic data is constructed by adding random noise to the

model prediction of incidence (for every time point tj) in the following manner:

Yj = z(tj ; θ0) + cUj . (37)
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Here, Uj is a standard normal random variable (Uj ∼ N (0, 1)) and the constant c is the product

of a pre-selected value, α, and the minimum value of the simulated incidence:

c = α

[
min

1≤i≤n
z(ti; θ0)

]
. (38)

The multiplier α allows us to control the variance of the noise, while the use of the minimum

incidence is an attempt to reduce the occurrence of negative values in the synthetic data set. It

is clear from Equation (37) that the noise added to the synthetic data has constant variance,

given by var(cUj) = c2. A realization of the case counting process is denoted by {yj}n
j=1 with

yj = z(tj ; θ0)+cuj , where all the uj ’s are independently drawn from a standard normal distribution.

The optimization routine requires an initial estimated value of the parameter; this is taken to be

θ = (1 + a)θ0, where a also denotes a pre-selected multiplier. Selecting different values for α and

a allows us to investigate the performance of the estimation process in the face of different levels

of noise and differing levels of information as to the approximate location of the best fitting model

parameter (i.e., the “true” parameter).

A synthetic data set with n = 1, 000 observations was constructed by setting α = 0.50. The initial

guess was set using a = 0.25. Then m = 10, 000 sample trajectories of R(t) were generated using

the procedure discussed above. The resulting estimates of the parameters and effective reproductive

numbers, together with measures of uncertainty, are given in Table 2. Also listed are the initial

parameter guesses given to the optimization routine and the minimized value of the cost function,

J(θ̂OLS). Figure 2(a) depicts the synthetic data (squares), together with the best fitting model

(solid curve). We remark that the observation noise, which is on the order of α = 0.50 times the

smallest incidence value, represents a very small error over the major part of the synthetic data set.

As such, it is almost impossible to distinguish between the data and fitted model in this figure.

The trajectories of the effective reproductive number are shown as grey solid curves in Panels (a)

and (b) of Figure 2, in which the trajectory R(t; θ̂OLS) appears as a solid black curve. Again, the

small errors make it difficult to distinguish between the central trajectory and the ensemble of R(t)

trajectories.
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Table 2: Estimates obtained using synthetic data with constant variance noise (α = 0.50, see
text for further details). The number of observations is n = 1, 000, while the R(t) sample size
is m = 10, 000. The optimization algorithm was initialized with the parameter value θ = 1.25θ0,
where θ0 denotes the true parameter. The true value, initial guess, estimate, and standard error,
are given for all parameters, along with the value of the cost function evaluated at the parameter
estimate. The minimum (Min.) and maximum (Max.) of the central estimate of the effective
reproductive number (R(t; θ̂OLS)) are given with the accompanying 2.5 and 97.5 percentiles (in
square brackets).

Parameter True value Initial guess Estimate Standard error
S0 3.500×105 4.375×105 3.501×105 1.065×102

I0 9.000×101 1.125×102 8.987×101 1.966×10−1

β̃ 5.000×10−6 6.250×10−6 5.003×10−6 3.794× 10−9

γ 5.000×10−1 6.250×10−1 5.013×10−1 1.609×10−3

J(θ̂OLS) = 1.099× 103

σ2
0 = 1.237× 100 σ̂2

OLS = 1.104× 100

Min. R(t; θ̂OLS) 0.138 [0.137,0.140]
Max. R(t; θ̂OLS) 3.494 [3.478,3.509]

Figure 3 contains box plots of the R(t) samples at two fixed times: (a) t = 2.01, and (b) t = 11.2.

We use the 2.5 and 97.5 percentiles of the R(t) sample distribution at time t to quantify uncertainty

in the central estimate of R(t). At the bottom of Table 2 the estimates of the effective reproductive

number are summarized by showing the minimum and maximum (over time) of the central estimate

of R(t) together with the uncertainty bounds obtained at these two time points.

A simple residuals analysis is illustrated in Figure 4. A residual at time tj is defined as yj −

z(tj ; θ̂OLS). In Figure 4(a), these residuals are plotted against the predicted values, z(tj ; θ̂OLS).

Figure 4(b) displays a plot of the residuals against time. No patterns or trends are seen in these

residual plots (for example, the magnitudes of the residuals show no trends in either plot and the

residuals do not exhibit any temporal patterns or correlations). This is to be expected because

the uj are realizations of independent (uncorrelated) and identically distributed (standard normal)

random variables.

In this example, the OLS methodology performs well, yielding excellent estimates of the true

parameter value. This should not be surprising because the noise level was chosen to be extremely

small and we provided the optimization routine with an initial parameter value that was close to

the true value.
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Figure 2: Results obtained by applying the OLS methodology to synthetic data with n = 1, 000
observations. Panel (a) depicts the best fit solution (solid curve), and the synthetic data with noise
(solid squares), respectively. Panel (b) displays 1, 000 of the m = 10, 000 effective reproductive
number curves (solid gray) constructed using parameters drawn from the 4-multivariate normal
distribution N4(θ̂OLS , Σ̂n

OLS). The curve R(t; θ̂OLS) is shown in solid black. The inset depicts a
close-up view of the curves for t in a small interval about t = 6.0.
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Figure 3: Variability in the samples of R(t) for two fixed values of t: (a) t=2.1 and (b) t = 11.2.
The box plots depict the 25, 50 and 75 percentiles of the distribution of m = 10, 000 R(t) samples
(lower edge, middle and upper edge, respectively, of the solid box), together with the 2.5 and 97.5
percentiles (lower and upper whiskers). Samples in the lower and upper 2.5 percentiles are shown
as crosses. Arrows depict the locations of the corresponding central estimates R(t; θ̂OLS).
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Figure 4: Analysis of the residuals from the OLS estimation applied to the synthetic data. Panel
(a) depicts the residuals yj − z(tj ; θ̂OLS) versus the model values z(tj ; θ̂OLS) for j = 1, . . . , n. Panel
(b) displays the residuals versus time tj for j = 1, . . . , n.
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The application of the OLS methodology does not always go so smoothly as in the previous example:

parameter estimates can be obtained that are far from the true values. The cost function, J(θ),

typically possesses multiple minima and the simple-minded use of fminsearch can yield a parameter

estimate located at one of the other (local) minima, particularly when the initial parameter estimate

is some distance away from the true value.

Table 3 presents estimates for the same synthetic data set, but for which the initial parameter

estimate was taken to be one hundred and seventy five percent (θ = 2.75θ0) away from the true

parameter value. This results in poor estimates of the parameters: the values of S0, β̃ and γ are

overestimated by 317, 42, and 1730 percent, respectively, while the value of I0 is underestimated

by 78 percent. Worryingly, the values of the standard errors give no warning that the parameter

estimates are quite so poor: the largest standard error, relative to the parameter estimate, is

obtained for γ and equals 14%, while these figures fall to 12%, 10% and less than 1% for the

remaining parameters.

The true maximum value of R(t) is 3.500, yet the effective reproductive number has an estimated

upper bound of 1.131; clearly the misleading estimates of S0 and γ causeR(t) to be underestimated.

If we did not know the true value of the effective reproductive number, we would be unlikely to

anticipate this underestimation, because the estimate and percentiles in this case, [1.102, 1.182],

do not suggest that there is a large uncertainty. However the issues with the estimation of the

individual parameters alert us to possible problems. Interestingly, the distribution of R(t) samples

are no longer normally distributed about the central estimate (Figure 6).

Because we know the true parameter value and the outcome of a successful model fit to this data

set, it was easy for us to identify the problems that arose here. We note, for instance, that the

value of the cost function for the estimated parameter value is two orders of magnitude larger than

in the previous case, quantifying that the model fit is much worse. We would not have the luxury

of these pieces of information if this estimation arose in the consideration of a real-world data set.

The residuals plots, however, clearly suggest that there are serious problems with the model fit.

In particular, there are obvious temporal trends in the residuals, indicating systematic deviations

between the fitted model and data. Even though the observation noise is small, it is just possible
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Table 3: Parameter estimates from synthetic data (n = 1, 000 observations) with constant variance
noise (α = 0.50) using θ = 2.75θ0 as the initial guess in the optimization algorithm. The sample
size for R(t) is m = 10, 000.

Parameter True value Initial guess Estimate Standard error
S0 3.500×105 9.625×105 1.459×106 1.772×105

I0 9.000×101 2.475×102 1.957×101 1.913×100

β̃ 5.000×10−6 1.375×10−5 7.098×10−6 2.662×10−8

γ 5.000×10−1 1.375×100 9.160×100 1.274×100

J(θ̂OLS) = 5.631× 105

σ2
0 = 1.237× 100 σ̂2

OLS = 5.653× 102

Min. R(t; θ̂OLS) 0.879 [0.837,0.904]
Max. R(t; θ̂OLS) 1.131 [1.102,1.182]

to see these deviations in Figure 5(a), but they are considerably easier to spot in the residuals plots

of Figures 5(b) and (c).
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Figure 5: Results obtained using θ = 2.75θ0 as the initial guess in the optimization algorithm,
applying the OLS methodology to synthetic data with n = 1, 000 and α = 0.50. Panel (a) displays
the model prediction (solid curve), and the observations (solid squares), respectively. Panel (b)
displays the residuals against the model values and panel (c) displays the residuals versus time.
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Figure 6: One thousand of the m = 10, 000 effective reproductive number curves (solid gray)
constructed using parameters drawn from the 4-multivariate normal distribution N4(θ̂OLS , Σ̂n

OLS).
The curve R(t; θ̂OLS) is shown in solid black. The curve of the median value of the R(t) samples,
at each t, is also shown as a dashed black curve, but is indistinguishable from the curve R(t; θ̂OLS).
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5.2 Synthetic Data with Non-constant Variance Noise

We generated a second synthetic data set with non-constant variance noise. The true value θ0 was

fixed, and was used to calculate the numerical solution z(tj ; θ0). Observations were computed in

the following fashion:

Yj = z(tj ; θ0) (1 + αVj) , (39)

where the Vj are independent random variables with standard normal distribution, and 0 < α < 1

denotes a desired percentage. In this way, var(Yj) = [z(tj ; θ0)α]2 which is non-constant across

the time points tj . If the terms {vj}n
j=1 denote a realization of {Vj}n

j=1, then a realization of the

observation process is denoted by yj = z(tj ; θ0)(1 + αvj).

An n = 1, 000 point synthetic data set was constructed with α = 0.075. The optimization algorithm

was initialized with the estimate θ = 1.10θ0. The weights in the normal equations defined by

Equation (30), were chosen as wj = 1/z(tj ; θ)2.

Table 4 lists estimates of the parameters and R(t), together with uncertainty estimates. In the case

of R(t), uncertainty was assessed based on the simulation approach using m = 10, 000 samples of

the parameter vector, drawn from N4(θ̂GLS , Σ̂n
GLS). Figure 7(a) depicts both data and fitted model

points, z(tj ; θ̂GLS), plotted versus tj . Figure 7(b) depicts 1, 000 of the 10, 000 R(t) curves.

Table 4: Estimates from a synthetic data of size n = 1, 000, with non-constant variance using
α = 0.075. The R(t) sample size is m = 10, 000. The initial guess of the optimization algorithm
was θ = 1.10θ0. Each weight in the cost function L(θ) (see Equation (31)) was equal to 1/z(tj ; θ)2

for j = 1, . . . , n.
Parameter True value Initial guess Estimate Standard error

S0 3.5000×105 3.800×105 3.498×105 1.375×103

I0 9.000×101 9.900×101 9.085×101 1.424×100

β̃ 5.000×10−6 5.500×10−6 4.954×10−6 4.411×10−8

γ 5.000×10−1 5.500×10−1 4.847×10−1 1.636×10−2

L(θ̂GLS) = 5.689× 100

σ2
0 = 5.625× 10−3 σ̂2

GLS = 5.712× 10−3

Min. R(t; θ̂GLS) 0.132 [0.120,0.146]
Max. R(t; θ̂GLS) 3.576 [3.420,3.753]
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Residuals plots are displayed in Figures 7(c) and (d). Because αvj = (yj − z(tj ; θ0))/z(tj ; θ0), by

construction of the synthetic data, the residuals analysis focuses on the ratios

yj − z(tj ; θ̂GLS)

z(tj ; θ̂GLS)

which in the labels of Figures 7(c) and (d) are referred to as “Modified residuals”. In Figure 7(c)

these ratios are plotted against z(tj ; θ̂GLS), while Panel (d) displays them versus the time points

tj . The lack of any discernable patterns or trends in Figure 7(c) and (d) confirms that the errors in

the synthetic data set conform to the assumptions made in the formulation of the statistical model

of Equation (39). In particular, the errors are uncorrelated and have variance that scales according

to the relationship stated above.
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Figure 7: Results from applying the GLS methodology to synthetic data with non-constant variance
noise (α = 0.075), using n = 1, 000 observations. The initial guess for the optimization routine was
θ = 1.10θ0. The weights in the cost function were equal to 1/z(tj ; θ)2, for j = 1, . . . , n. Panel (a)
depicts the observed and fitted values and panel (b) displays 1, 000 of the m = 10, 000 R(t) sample
trajectories. Residuals plots are presented in panels (c) and (d): modified residuals versus fitted
values in (c) and modified residuals versus time in (d).
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6 Analysis of Influenza Outbreak Data

The OLS and GLS methodologies were applied to longitudinal observations of six influenza out-

breaks (see Section 2), giving estimates of the parameters and the reproductive number for each

season. The number of observations n varies from season to season. The R(t) sample size was

m = 10, 000 in each case. The set of admissible parameters Θ is defined by the lower and upper

bounds listed in Table 5 along with the inequality constraint S0β̃/γ > 1. The bounds in Table 5

were obtained or based on [8, 23, 25] and references therein. For brevity, we only present here the

results obtained using data from the 1989-1999 season.

Table 5: Lower and upper bounds on the initial conditions and parameters.

Suitable Range Unit

1.00×102 < S0 < 7.00×106 people

0.00 < I0 < 5.00×103 people

7.00×10−9 < β̃ < 7.00×10−1 weeks−1people−1

3/7 < 1/γ <4/7 weeks

6.1 OLS Estimation

In most cases, visual comparison of the trajectory of the best fitting model obtained using OLS

and the data points suggests that a good fit has been achieved (Figure 8(a)). The statistics that

quantify the uncertainty in the estimated values of the parameters, however, indicate that this may

not always be the case. In many cases, the standard errors are of the same order of magnitude as

the parameter values themselves, indicating wide error bounds (see Table 6) and suggesting a lack

of confidence in the estimates.

We should, however, interpret the statistical results with some caution because the residuals plots

(Figure 8(c) and (d)) show clear patterns, indicating that the assumptions of the statistical model

may have been violated. For instance, the variance of the residuals appears to increase with the
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Table 6: Season 1998-1999. Parameter and effective reproductive number estimates obtained using
OLS.

Parameter Estimate Standard error
S0 6.200×103 4.514×103

I0 3.878×10−2 1.812×10−2

β̃ 3.667×10−4 2.198×10−5

γ 1.750×100 1.753×100

J(θ̂OLS) = 6.357× 103

σ̂2
OLS = 2.192× 102

Min. R(t; θ̂OLS) 0.752 [0.752,0.824]
Max. R(t; θ̂OLS) 1.299 [1.202,1.300]

predicted value. There are definite patterns visible in the residuals versus time plot. The temporal

correlation of the errors could represent some inadequacy in the way that the dynamic model

describes the epidemic process, or an inadequacy in the data set itself.

Another indication of problems in the estimation process comes from the matrix

χ(θ̂OLS , n)T χ(θ̂OLS , n). The condition number of this matrix is 9.4 × 1019, indicating that the

matrix is close to singular. Calculation of the covariance matrix requires the inversion of this

matrix, and, as mentioned above, the asymptotic theory requires that the matrix Ω0, defined as

a limit of matrix products of this form, has a non singular limit as n → ∞. A nearly singular

matrix can arise when there is redundancy in the data or when there are problems with parameter

identifiability [3, 4].

It is interesting to observe that the estimated values of γ frequently fall on the boundary of the

feasible region. This may impact the uncertainty analysis, given that the conditions of the asymp-

totic theory require that the true parameter value lies in the interior of the feasible region. If our

estimates commonly fall on the boundary, this could be an indication that the true parameter value

may not lie within our feasible region. We return to this issue below, in Section 6.4.
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Figure 8: OLS model fits to influenza data from season 1998-1999. Panel (a) depicts the observa-
tions (solid squares) and the model prediction (solid curve), respectively. In Panel (b) the samples
of the effective reproductive number R(t) are displayed (grey curves) together with the central
estimate R(t; θ̂OLS) (solid black curve). The dashed black curve depicts the median, at each time
point, of the distribution of the R(t) samples. Panel (c) contains the residuals plotted versus the
model prediction. In Panel (d) residuals are plotted against time.
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6.2 GLS Estimation

Visual inspection suggests that the model fits obtained using the GLS approach (Figure 9) are even

worse than those obtained using OLS. This is somewhat misleading, however, because the weights,

defined as wj = 1/[z(tj ; θ)]2, mean that the GLS fitting procedure (unlike visual inspection of

the figures) places increased emphasis on datapoints whose model value is small and decreased

emphasis on datapoints where the model value is large. If these graphs are, instead, plotted

with a logarithmic scale on the vertical axis, an accurate visualization is obtained (Figure 10):

multiplicative observation noise on a linear scale becomes constant variance additive observation

noise on a logarithmic scale.

As before, however, the parameter estimates have standard errors that are often of the same order

of magnitude as the estimates themselves (Table 7). The residuals plots reveal clear patterns and

trends (Figure 9(c) and (d)). Temporal trends in the residuals (and visual inspection of the plots

depicting the best fitting model and the datapoints) indicate that there are systematic differences

between the fitted model and the data. For instance, it appears that the fitted model peaks slightly

earlier than the observed outbreak, and, as a result, there are numbers of sequential points where

the data lies above or below the model. The modified residuals versus model plot suggests that the

variation of the residuals may be decreasing as the model value increases.

The condition number of the matrix χ(θ̂GLS , n)T W (θ̂GLS)χ(θ̂GLS , n) is 9.0 × 1019. This is very

similar to that for the OLS estimation, again suggesting caution in interpreting the standard errors.

The modified residuals versus model plot indicates that the 1/z(tj ; θ̂GLS)2 weights may have over-

compensated for the non-constant variance seen in the OLS residuals. This suggests that it may

be appropriate to use weights that vary in a milder fashion, such as 1/z(tj ; θ̂GLS). The model fits

that result with these new weights appear, by visual inspection, to provide a more satisfactory fit

to the data (Figure 11). Standard errors for the parameter estimates are still large, however (Table

8). Our earlier comment concerning the difficulty of assessing the adequacy of GLS model fits by

visual inspection should be borne in mind— see Figure 12 for a more accurate depiction in which

square roots of the quantities are plotted so as to transform the errors in which variance scales with
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Table 7: Results of GLS estimation applied to influenza data from season 1998-1999, weights equal
to 1/z(tj ; θ)2.

Parameter Estimate Standard error
S0 7.939×103 1.521×104

I0 2.436×10−1 4.216×10−1

β̃ 3.458×10−4 5.233×10−5

γ 2.333×100 5.318×100

L(θ̂GLS) =1.754×101

σ̂2
GLS = 6.047× 10−1

Min. R(t; θ̂GLS) 0.843 [0.784,1.018]
Max. R(t; θ̂GLS) 1.177 [1.052,1.252]

the model value into additive errors with constant variance.

The new modified residuals plots, which now focus on the quantities

yj − z(tj ; θ̂GLS)

z(tj ; θ̂GLS)1/2
,

also appear to exhibit less marked patterns than they did for either OLS or GLS with the 1/z2

weights (Figures 11(c) and (d)). The condition number for the matrix χ(θ̂GLS , n)T W (θ̂GLS)χ(θ̂GLS , n)

is 1.3×1020, again suggesting ill-posedness and that the standard errors should be interpreted with

caution.

A handful of surprisingly large modified residuals are seen on many occasions, although these often

do not appear on our plots because we choose the range on the residuals axis so that the majority of

the points can be seen most clearly. The locations of these residuals is noted on the figure caption;

we see that they occur during the initial part of the time series, when the numbers of cases are low.
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Figure 9: GLS applied to influenza data from season 1998-1999. The weights were taken equal
to 1/z(tj ; θ)2. Panel (a) depicts the observations (solid squares) as well as the model prediction
(solid curve). In Panel (b) 1, 000 of the m = 10, 000 samples of the effective reproductive number
R(t) are displayed. The solid curve depicts the central estimate R(t; θ̂GLS) and the dashed curve
the median of the R(t) samples at each point in time. Panel (c) exhibits the modified residuals
(yj − z(tj ; θ̂GLS))/z(tj ; θ̂GLS) plotted versus the model predictions, z(tj ; θ̂GLS). Panel (d) displays
the modified residuals plotted against time.
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Figure 10: Best fitting model for the 1998-1999 season, obtained using GLS with 1/z(tj ; θ)2 weights.
Observations (solid squares) and the model prediction (solid curve) are plotted on a logarithmic
scale.

Table 8: Results of GLS estimation applied to the 1998-1999 season influenza data. Weights taken
to equal 1/z(tj ; θ).

Parameter Estimate Standard error
S0 7.799×103 9.269×103

I0 3.868×10−2 3.183×10−2

β̃ 3.643×10−4 2.760×10−5

γ 2.333×100 3.462×100

L(θ̂GLS) =2.335×102

σ̂2
GLS = 8.051× 100

Min. R(t; θ̂GLS) 0.810 [0.754,0.828]
Max. R(t; θ̂GLS) 1.218 [1.200,1.297]
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Figure 11: GLS estimation for influenza data from season 1998-1999. Weights equal 1/z(tj ; θ).
Panel (a) depicts the observations (solid squares) as well as the model prediction (solid curve).
In Panel (b) 1, 000 of the m = 10, 000 samples of the effective reproductive number R(t) are
displayed, together with the central estimate R(t; θ̂GLS (solid curve) and, at each time point,
the median of the R(t) samples (dashed curve). Panel (c) presents the modified residuals (yj −
z(tj ; θ̂GLS))/z(tj ; θ̂GLS)1/2 versus the model predictions. Panel (d) displays the modified residuals
plotted against time. Three modified residuals fall outside the range shown on this graph: their
values (and the timepoints at which they arise) are -4.91 (at t = 1), -7.72 (at t = 2), and -9.50 (at
t = 5).
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Figure 12: Best fitting model for the 1998-1999 season, obtained using GLS with 1/z(tj ; θ) weights.
Square roots of observations (solid squares) and square roots of the model prediction (solid curve)
are plotted.
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6.3 GLS Estimation Using Truncated Data Sets

It is quite plausible that our description of the error structure of the data is inadequate when the

numbers of cases are at low levels. For instance, the reporting process might change as the outbreak

starts to take hold (e.g., doctors become more alert to possible flu cases) or comes close to ending.

Also, our model is deterministic whereas a real-world epidemic contains stochasticity. Stochastic

effects may exhibit a relatively large impact at the start or end of an epidemic, when the numbers

of cases are low. It is possible for the infection to undergo extinction, a phenomenon which cannot

be captured by the deterministic model. Spatial clustering of cases is also a distinct possibility,

particularly during the early stages of an outbreak. This will affect the time course of an outbreak

as well as the reporting process: clustering of cases may well increase the reporting noise if cases in

a cluster tend to get reported together (e.g., a cluster occurs within an area where many isolates

are sent to the CDC) or not reported together (e.g., a cluster occurs in an area that has poorer

coverage in the reporting process).

Indeed, examination of one of the influenza time series plotted on either a logarithmic or square

root scale (Figures 10 or 12) indicates that both the start and end of the time series are problematic.

The fit of the model is clearly poorer over these parts of the time series, which correspond to the

times when the observed values are small.

Both forms of the weights (inversely proportional to the square of the predicted incidence or in-

versely proportional to the predicted incidence) mean that errors at these small values have con-

siderable impact on the cost function, and hence on the GLS estimation process, although this is

less of a concern for the 1/z weights.

Another issue that has been raised by studies of parameter estimation in biological situations

concerns redundancy in information measured when a system is close to its equilibrium [4]. This

might be a relevant issue for the final part of the outbreak data as there is often a period lasting

ten or more weeks when there are few cases.

We investigated whether the removal of the lowest valued points from the data sets would improve
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the fitting process. We constructed truncated data sets by considering only the period between the

time when the number of isolates first reached ten at the start of the outbreak and first fell below

ten at the end of the outbreak. As a notational convenience, we refer to the numbers of susceptibles

and infectives at the start of the first week of the truncated data set as S0 and I0, even though

these times no longer correspond to the start of the influenza season. (For example, in Figures 13

and 14, S0 and I0 refer to the state of the system at t = 8.)

Comparing Tables 7 and 9, which arise from GLS estimation with 1/z2 weights, we see that the

standard errors for the parameter estimates have decreased. This decrease occurs even though the

number of points in the data set has fallen from 35 to 23, causing the factor 1/(n− 4) that appears

in Equation (35) to increase by 80%. The corresponding residuals plots (see Figure 13(b) and

(c)) provide no evidence that the assumptions of the statistical model are invalid. The condition

number of the matrix χ(θ̂GLS , n)T W (θ̂GLS)χ(θ̂GLS , n) is 2.4× 1019.

A similar result is seen in the 1/z weights case. We remark that we no longer have the extreme

outlier residuals. The condition number of the matrix χ(θ̂GLS , n)T W (θ̂GLS)χ(θ̂GLS , n) is 9.2×1019.

Truncating the data sets has helped considerably with the GLS estimation process, although the

large condition numbers still are cause for caution with the standard errors.

Truncation of the data set had little effect on the parameter estimates obtained using OLS (results

not shown), except that the values of S0 and I0 were changed because they refer to a later initial

time, as discussed above. Standard errors for the OLS estimates were higher than for the full data

set, as should be expected given the reduced number of data points.
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Table 9: Estimation results from GLS, with weights 1/z(tj ; θ)2, applied to truncated influenza data
set for season 1998-1999.

Parameter Estimate Standard error
S0 7.458×103 5.936×103

I0 1.758×100 1.279×100

β̃ 3.828×10−4 2.069×10−5

γ 2.333×100 2.331×100

L(θ̂GLS) =9.475×10−1

σ̂2
GLS = 5.573× 10−2

Min. R(t; θ̂GLS) 0.808 [0.745,0.820]
Max. R(t; θ̂GLS) 1.223 [1.211,1.311]

Table 10: Estimation results from GLS, with weights 1/z(tj ; θ), applied to truncated influenza data
set for season 1998-1999.

Parameter Estimate Standard error
S0 6.017×103 3.287×103

I0 2.091×100 9.483×10−1

β̃ 3.797×10−4 1.774×10−5

γ 1.750×100 1.317×100

L(θ̂GLS) =3.872×101

σ̂2
GLS = 2.277× 100

Min. R(t; θ̂GLS) 0.750 [0.748,0.819]
Max. R(t; θ̂GLS) 1.306 [1.212,1.308]
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Figure 13: Model fits obtained using GLS on truncated influenza data from season 1998-1999,
weights equal to 1/z(tj ; θ)2. Panel (a) depicts the observations (solid squares) as well as the model
prediction (solid curve). Panel (b) displays 1, 000 of the m = 10, 000 samples of the effective
reproductive number, together with the central estimate R(t; θ̂GLS) (solid curve), and the median
of the R(t) samples at each point in time (dashed curve). Panel (c) displays the modified residuals
versus the model predictions. In Panel (d) modified residuals are plotted against time.
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Figure 14: Model fits obtained using GLS on truncated influenza data from season 1998-1999,
weights equal to 1/z(tj ; θ). Panel (a) shows the observations (solid squares) as well as the model
prediction (solid curve). In Panel (b) 1, 000 of the m = 10, 000 samples of the effective reproductive
number R(t) are displayed together with the central estimate R(t; θ̂GLS) (solid curve) and the
median of the R(t) samples at each time point (dashed curve). Panel (c) shows the modified
residuals versus the model prediction. In panel (d), each modified residual is displayed versus the
observation time point.
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6.4 Estimation for a Reduced Parameter Set

The preceding results indicate that there are difficulties in estimating the parameter γ, as witnessed

by the number of situations in which the estimate lies on the boundary of the feasible parameter

region. Because γ is the one parameter for which we can obtain reasonably reliable estimates

without the need to fit a model to an incidence time series [8, 23], we fix its value and investigate

estimation for a reduced three parameter problem. In all of what follows, we apply the estimation

methodology to the truncated data sets, as discussed in the previous section.

We use a fixed infectious period of four days, i.e., 1/γ = 4 days = 4/7 weeks, and estimate the

parameter vector θ = (S0, I0, β̃) using the OLS approach and the GLS approach with weights

wj = 1/[z(tj ; θ)]2 or wj = 1/[z(tj ; θ)].

Estimation for the reduced parameter set leads to model fits that are not so different from those

obtained using the full (p = 4) set of parameters in θ. For example, for the truncated data set from

the 98-99 season, with weights equal to 1/z(tj ; θ), we have L(θ̂GLS) = 38.72 for the full parameter

set (Table 10) while L(θ̂GLS) = 38.72 for the reduced parameter set (Table 13). The standard

errors of the parameters, however, are smaller for the reduced parameter set: the three standard

errors for the estimates of S0, I0 and β̃ are 3.287×103, 9.483×10−1 and 1.774×10−5, respectively,

for the full parameter set, while they are 2.171×102, 3.174×10−1 and 1.547×10−5 for the reduced

set.

The condition numbers of the matrices χ(θ̂GLS , n)T W (θ̂GLS)χ(θ̂GLS , n) are 4.5×1016 and 4.2×1016

for the 1/z2 and 1/z weights, respectively. The increased precision of the estimates here likely results

from identifiability issues in the estimation problem for the full set of model parameters.
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Table 11: Estimation of three epidemiological parameters. Results obtained by applying OLS to
truncated influenza data set from season 1998-1999.

Parameter Estimate Standard error
S0 6.134×103 3.329×102

I0 2.442×100 5.435×10−1

β̃ 3.707×10−4 2.348×10−5

J(θ̂OLS) =6.131×103

σ̂2
OLS = 3.406× 102

Min. R(t; θ̂OLS) 0.754 [0.744,0.787]
Max. R(t; θ̂OLS) 1.299 [1.258,1.314]

Table 12: Estimation of three epidemiological parameters. Results obtained by applying GLS, with
weights equal to 1/z(tj ; θ)2, to truncated influenza data from season 1998-1999.

Parameter Estimate Standard error
S0 5.985× 103 3.226× 102

I0 2.148× 100 2.890×10−1

β̃ 3.808×10−4 1.979× 10−5

L(θ̂GLS) = 9.880× 10−1

σ̂2
GLS = 5.489× 10−2

Min. R(t; θ̂GLS) 0.752 [0.740,0.774]
Max. R(t; θ̂GLS) 1.302 [1.274,1.320]

Table 13: Estimation of three epidemiological parameters. Results obtained by applying GLS, with
weights equal to 1/z(tj ; θ), to the truncated influenza data set from season 1998-1999.

Parameter Estimate Standard error
S0 6.017×103 2.171×102

I0 2.090× 100 3.174× 10−1

β̃ 3.798×10−4 1.547×10−5

L(θ̂GLS) =3.872×101

σ̂2
GLS = 2.151× 100

Min. R(t; θ̂GLS) 0.750 [0.739,0.767]
Max. R(t; θ̂GLS) 1.306 [1.283,1.321]
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Figure 15: Estimation of three epidemiological parameters using OLS on a truncated data set
from the 1998-1999 influenza season. Panel (a) depicts the observations (solid squares) as well
as the model prediction (solid curve). In Panel (b) 1, 000 of the m = 10, 000 samples of the
effective reproductive number R(t) are displayed, together with the central estimate R(t; θ̂OLS)
(solid curve) and the median of the R(t) samples at each time point (dashed curve). Panel (c)
exhibits the residuals yj − z(tj ; θ̂OLS) versus the model predictions z(tj ; θ̂OLS). In Panel (d) each
residual is displayed versus the observation time point tj = j, for j = 1 . . . , n.
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Figure 16: Estimation of three epidemiological parameters, using truncated data from influenza
season 1998-1999 and GLS with each weight equal to 1/z(tj ; θ)2 for j = 1, . . . , n. Panel (a) depicts
the observations (solid squares) as well as the model prediction (solid curve). In Panel (b) 1, 000
of the m = 10, 000 samples of the effective reproductive number R(t) are displayed. The solid
curve depicts the central estimate R(t; θ̂GLS) and, at each time point, the dashed curve depicts the
median of the R(t) samples. Panel (c) exhibits the modified residuals (yj−z(tj ; θ̂GLS))/z(tj ; θ̂GLS)
versus the model predictions z(tj ; θ̂GLS). In Panel (d) each modified residual is displayed versus
the observation time point tj = j, for j = 1 . . . , n.
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Figure 17: Estimation of three epidemiological parameters using truncated influenza data from
season 1998-1999. GLS was used, with each weight equal to 1/z(tj ; θ) for j = 1, . . . , n. Panel (a)
depicts the observations (solid squares) as well as the model prediction (solid curve). In Panel
(b) 1, 000 of the m = 10, 000 samples of the effective reproductive number R(t) are displayed.
Also shown are the central estimate R(t; θ̂GLS) (solid curve) together with the median of the R(t)
samples (dashed curve). Panel (c) exhibits the modified residuals (yj − z(tj ; θ̂GLS))/z(tj ; θ̂GLS)

1
2

versus the model predictions z(tj ; θ̂GLS). In Panel (d) each modified residual is displayed versus
the observation time point tj = j, for j = 1 . . . , n.
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7 Discussion

We have presented parameter estimation methodologies that, using sensitivity analysis and asymp-

totic statistical theory, also provide measures of uncertainty for the estimated parameters. The

techniques were illustrated using synthetic data sets, and it was seen that they can perform very

well with reasonable data sets. Even within the ideal situation provided by synthetic data, poten-

tial problems of the approach were identified. Worringly, these problems were not apparent from

inspection of the uncertainty estimates (standard errors) alone. However, these problems were

revealed by examination of model fit diagnostic plots, constructed in terms of the residuals of the

fitted model. These results argue strongly for the routine use of uncertainty estimation, together

with careful examination of residuals plots when using SIR-type models with surveillance data.

The statistical methodology presented here only addresses the impact of observation error on pa-

rameter estimation. While the approach can handle different statistical models for the observation

process, it does assume that we have a model that correctly describes the behavior of the system,

albeit for an unknown value of the parameter vector. The methodology does not examine the effect

of mis-specification of the model. It is well-known that this effect can dwarf the uncertainty that

arises from observation error [24]. Examination of residuals plots, however, can identify systematic

deviations between the behavior of the model and the data.

Application of the least squares approaches to the influenza isolate data gave mixed results. Esti-

mates of the effective reproductive number were in broad agreement with results obtained in other

studies (see Table 14). While apparently reasonable fits were obtained in some instances, the un-

certainty analyses highlighted situations in which visual inspection suggested that a good fit had

been obtained but for which estimated parameters had large uncertainties. Residuals plots showed

that error variance may not have been constant (i.e., observation noise was not simply additive),

but more likely scaled according to either the square of the fitted value (i.e., relative measurement

error) or the fitted value itself. The potentially large impact of errors at low numbers of cases on

the GLS estimation process was clearly observed.
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Table 14: Comparison between reproductive number estimates across studies of interpandemic
influenza. In this table R0 stands for the basic reproductive number (naive population), while
max(R(t)) denotes the initial effective reproductive number in a non-naive population.

Studies of interpandemic influenza Estimates
Bonabeau et al. [5] 1.70 ≤ R0 ≤ 3.00
Chowell et al. [10] 1.30 ≤ max(R(t)) ≤ 1.50
Dushoff et al. [15] 4.00 ≤ R0 ≤ 16.00
Flahault et al. [18] R0 = 1.37
Spicer & Lawrence [28] 1.46 ≤ R0 ≤ 4.48
Viboud et al. [31] 1.90 ≤ max(R(t)) ≤ 2.50

Temporal trends were observed in the residuals plots, indicative of systematic differences between

the behavior of the SIR model and the data. Potential sources of these differences include inade-

quacies of the model to describe the process underlying the data and issues with the reliability of

the data itself, particularly in the light of the health warning attached to the data by the CDC.

(We emphasize, however, that our use of these data sets should be seen as only an illustration of

the approach.)

Sophisticated mathematical and statistical algorithms and analyses can be utilized to fit SIR-type

epidemiological models to surveillance data. Good quality data is required if this approach is to

be successful. In many instances, however, the available surveillance data is most likely inadequate

to validate the SIR model with any degree of confidence. This is likely to be true in much of the

modeling efforts for epidemics where the data collection process has inadequacies.
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