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Abstract

Relapse, the recurrence of a disorder following a symptomatic remission, is a fre-
quent outcome in substance abuse disorders. Some of our prior results suggested that
relapse, in the context of abusive drinking, is likely an “unbeatable” force as long as
recovered individuals continue to interact in the environments that lead to and/or re-
inforce the persistence of abusive drinking behaviors. Our earlier results were obtained
via a deterministic model that ignored differences between individuals, that is, in a
rather simple “social” setting. In this paper, we address the role of relapse on drink-
ing dynamics but use models that incorporate the role of “chance”, or a high degree
of “social” heterogeneity, or both. Our focus is primarily on situations where relapse
rates are high. We first use a Markov chain model to simulate the effect of relapse on
drinking dynamics. These simulations reinforce the conclusions obtained before, with
the usual caveats that arise when the outcomes of deterministic and stochastic models
are compared. However, the simulation results generated from stochastic realizations
of an “equivalent” drinking process in populations “living” in small world networks,
parameterized via a disorder parameter p, show that there is no social structure within
this family capable of reducing the impact of high relapse rates on drinking preva-
lence, even if we drastically limit the interactions between individuals (p ≈ 0). Social
structure does not matter when it comes to reducing abusive drinking if treatment
and education efforts are ineffective. These results support earlier mathematical work
on the dynamics of eating disorders and on the spread of the use of illicit drugs. We
conclude that the systematic removal of individuals from high risk environments, or
the development of programs that limit access or reduce the residence times in such
environments (or both approaches combined) may reduce the levels of alcohol abuse.

Keywords: drinking behavior; deterministic model; stochastic model; small-world network;
social influence; drinking dynamics.

1 Introduction

The mechanisms responsible for observed drinking patterns within and between populations
are complex (Daido 2004; Weitzman et al. 2003; Mubayi et al. 2008; and references therein).
The development of compartmental and mathematical frameworks geared towards the iden-
tification of key “transition” mechanisms that increase the percentage of abusive drinkers
must factor in the impact of individuals’ socioeconomic characteristics, their propensity to
drink (heavy drinking tends to run in families), changes in local environments (going to col-
lege), treatment failure, ineffectiveness of educational efforts, cultural norms and community
values (Mubayi et al. 2008; and references therein).

The term drinking (population) dynamics refers to the study and identification of “aver-
age” mechanisms, at the individual level, responsible for observed drinking patterns within
the organizational and temporal scales of interest. We model drinking dynamics at the

2



population level as the result of individuals’ social contacts in pre-specified environments
(“drinking contagion”). This modeling approach has proved useful in the identification of
the mechanisms behind social patterns that are thought to be, in part, an outcome of intense
interactions between individuals in shared social environments. This modeling approach has
been applied to the study of the spread of scientific ideas and innovations (Bettencourt et al.
2006 ); in studies that focus on the mechanisms behind the observed increases in prevalence
of eating disorders (González et al. 2003); in studies that address the impact of relapse on
the distribution of drinkers (Sánchez et al. 2007; Sánchez 2006); in studies that envision
violence as an epidemic (Patten and Arboleda-Florez 2004); as explanation for the observed
growth or decline of crime in cities (Gladwell 1996); and in studies that highlight the ex-
plosive increases in the use of illicit drugs, such as ecstasy (Song et al. 2006; Mackintosh
and Stewart 1979). Researchers are interested in studying the impact of individual drink-
ing habits and preferences’ variability at multiple levels of social organization: from small
“isolated” to highly connected communities; and over short or long time horizons. Models
have been used to explore the capacity of drinking environments to support communities
of drinkers as well as the impact of individuals’ movements between drinking venues on the
overall distribution of drinking types (Mubayi et al. 2008).

The National Institute on Alcohol Abuse and Alcoholism estimates that 18 million Amer-
icans suffer from alcohol abuse or dependence. Alcohol-related problems cost the United
States (U.S.) nearly $185 billion annually (National Institute of Alcohol Abuse and Al-
coholism 2008a) while alcohol abuse was responsible for nearly 80,000 fatalities per year
during 2001-05, and it is now the third leading cause of death in the U.S. (Centers for Dis-
ease Control and Prevention 2008a). Prevention and control efforts that include treatment
and education programs that target specific populations including children (Leadership to
Keep Children Alcohol Free 2008) or adolescents (College Drinking 2008) are in need of im-
provement. Among the many problems confronting these programs are the very high rates
of relapse after treatment that are observed. Up to 70% of treated alcohol abusers relapse
after treatment (reviewed in Sánchez et al. 2007). Mathematical studies can be particularly
effective as guides to the evaluation, testing and implementation of single or multiple inter-
vention strategies over short or long time scales. This is particularly true in the study of
chronic relapsing diseases such as alcohol addiction.

Social dynamics, disease transmission, and social structure
Several aspects linked to disease transmission depend strongly on a population’s social dy-
namics. Disease dynamics can often be driven by factors that include heterogeneity in
behavior, frequency of use of mass transportation, travel patterns, and cultural norms and
practices. Examples where the use of mathematical models have generated useful insights
include studies on the role of behavior on the transmission dynamics of sexually transmitted
diseases like gonorrhea or HIV (Castillo-Chavez et al. 2003; Hethcote 2000; Hethcote and
Yorke 1984; Anderson and May 1991; and references therein) and studies on the intensity
and frequency of travel on the spread of communicable diseases such as SARS (Chowell
et al. 2003; Song et al. 2003) and influenza (Hyman et al. 2003; Chowell et al. 2006a).
The most significant study of the role of heterogenous mixing on the transmission dynamics
of gonorrhea was carried out by Hethcote and Yorke (Hethcote and Yorke 1984). These
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researchers through their introduction of the concept of core group (outliers in the distribu-
tion of sexually-active individuals) showed that most secondary cases of gonorrhea infections
could be traced to the core (most connected nodes in a network of sexually-active individu-
als). Furthermore, they showed that focusing surveillance and treatment on core subpopu-
lations resulted in significant reductions in gonorrhea prevalence. The public health policy
at that time wrongly focused on the “random” testing of women, a policy derived from data
that showed that a large percentage of gonorrhea infected women are indeed asymptomatic
(Hethcote and Yorke 1984; and references therein).

The systematic study of the role of heterogenous social landscapes on disease dynamics began
in direct response to efforts to stop the HIV epidemics. Efforts to compute explicit mixing
matrices (who had interactions with whom) and to study the impact of sexual preference in
the context of HIV transmission intensified (Blythe et al. 1990; Blythe et al. 1995; Blythe et
al. 1991; Busenberg et al. 1989; Busenberg et al. 1991; Hsu 1993; Hsu et al. 1994; Hsu et al.
1996; Castillo-Chavez et al. 1996; Hethcote 2000; Anderson and May 1991; Castillo-Chavez
1989; and references therein).

Most recently, efforts to explore disease dynamics in the context of heterogenous (fixed)
social network structures have proved quite fruitful. The study of epidemics on network
has increased our understanding of the role of “social” heterogeneity on disease dynamics
(Newman 2003; and references therein) but the impact of the efforts of the mathematical
“network” community goes beyond the study of epidemics on networks, as is evident from
the wealth of applications found in the literature (see Watts and Strogatz 1998; Barabasi
and Albert 1999; Newman 2003; Newman et al. 2006; and references therein). There is a
body of research that contributes to the characterization and validation of some classes of
network structures with data (Meyers et al. 2005); structures whose statistical properties
are most often captured via power law distributions (Newman et al. 2006). The class of best
known or more popular models of this type include small-world (Watts and Strogatz 1998)
and scale-free (Barabasi and Albert 1999) networks.

Social network analysis is the result (to a great degree) of major contributions by social
scientists (Wasserman and Faust 1994; and references therein). Recent contributions by
mathematical scientists (Newman 2003 and references therein; Newman et al. 2006; Watts
and Strogatz 1998) have increased interactions between social and mathematical scientists.
Applications that make use of specialized network structures include studies of the structure
of scientific co-authorship networks (Newman 2003), the organizational structure of com-
mittees in the U.S. House of representatives (Porter et al. 2005), the structure of internet
networks (Pastor-Satorras and Vespignani 2001), the properties of contact tracing networks
for SARS (Meyers et al. 2005), and the nature of sexual partnership networks (Liljeros et
al. 2001). Efforts to study stochastic epidemic and social processes on networks have also
been carried out in the context of homeland security (Chowell and Castillo-Chavez, 2003
and references therein) and drinking (Braun et al. 2006). Our goal here is “theoretical”,
that is, we focus on the study of drinking on some networks characterized by scaling laws
(Newman 2003; and references therein). Specifically, the primary objective is to explore the
role of network structure on the distribution of drinkers in communities (small world type)
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where relapse rates are high.

This manuscript is organized as follows. Section 2 revisits the results in (Sánchez et al.
2007; Sánchez 2006) on the role of relapse on the distribution of drinking types. Section 3
introduces the stochastic analog of the deterministic model to highlight the role of variability
in the distribution of drinking types of Section 2. Section 4 simulates one version of the
stochastic drinking dynamics in a small-world network. Finally, Section 5 discusses the role
of relapse in these settings.

2 A Deterministic Contagion Model in Well-mixed Drink-

ing Communities

In the drinking model formulation proposed in (Sánchez et al. 2007), the population is di-
vided in three classes: S(t), moderate and occasional drinkers (Centers for Disease Control
and Prevention 2008c), D(t), problem or heavy drinkers (Centers for Disease Control and
Prevention 2008d; National Institute of Alcohol Abuse and Alcoholism 2008b), and tem-
porarily recovered, R(t). Table 1 presents the definitions used in (Sánchez et al. 2007)
where it is assumed that the population is composed of “average” individuals that interact
at random with each other. The proportion of contacts of S-individuals with D-individuals
per unit of time is therefore proportional to D/N where N = S +D + R, denotes the total
size of the community. The progression rate from S to D and the relapse rate from R to D
depend on frequency-dependent (random) interactions.

In (Sánchez et al. 2007) the model is given by the following set of nonlinear differential
equations:

dS

dt
= µN − βS(t)

D(t)

N
− µS(t), (1)

dD

dt
= βS(t)

D(t)

N
+ ρR(t)

D(t)

N
− (µ+ φ)D(t), (2)

dR

dt
= φD(t)− ρR(t)

D(t)

N
− µR(t), (3)

N = S(t) +D(t) +R(t), (4)

where β denotes the per-capita effective contact rate (transmission rate), that is, βSD/N
denotes the rate of transitions from S to D, the result of the frequency-dependent interactions
between individuals in the classes S and D; µ denotes the per-capita departure rate from
the system; ρ denotes the per-capita effective relapse rate, that is, ρRD/N denotes the rate
of transitions from R to D, the result of the frequency-dependent interactions between R
and D; φ denotes the per-capita recovery (treatment or education) rate; and µN denotes
the total recruitment rate into this homogeneous social mixing community. It is assumed
that all “recruits” are S-individuals. Hence, we set the S-recruitment rate equal to µN as it
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guarantees constant population size. The validity of the analysis is therefore tied to a time
horizon where changes in total population size are minimal.

The reproductive number under a treatment/education regime φ is given by

Rφ ≡ R(φ) =
β

µ+ φ
. (5)

Rφ is a dimensionless quantity (ratio or number) that can be interpreted as the number of
D-individuals “generated” in a population of primarily S-individuals sharing a common envi-
ronment. That is, if we start with S ≈ N individuals and introduce a “typical” D-individual
then we expect Rφ secondary cases generated from the S population per D-individual, but
only at the start of the “outbreak”. Hence, Rφ > 1 results in an exponentially growing
D-community if N is large enough. We also expect that when Rφ < 1, the introduction
of D-individuals in a population where S ≈ N (N large) will not result in the growth and
(eventual) establishment of a problem-drinking community (D-individuals). The above ob-
servations are on target when the rate of relapse is linear, that is, ρR rather than ρRD/N .
However, when the relapse rate is nonlinear, namely, ρRD/N , the outcome is not as “ex-
pected”. The outcome depends on the ratios

Rρ =
ρ

β
[1−R(φ)] (6)

Rc =
ρ

β

[
1

1 + 1
R0

− 2

√
1

R0

− µ

ρ

]
, (7)

where R(φ) is defined in Equation (5); R0 ≡ R(0) = β/µ.

Rρ can be interpreted as the number of problem drinkers (D-individuals) generated from
the R-class as a result of the frequency-dependent interactions between the R- and D-classes
(R-individuals remain in the same environment). We observe that Rρ > 0 if and only if
R(φ) < 1. On the other hand Rc > 0 but only as long as

β

µ+ β
> 2

√
1

R0

− µ

ρ
> 0.

We have not been able to interpret the meaning of Rc in social terms. However, the value
of Rc, under some conditions, provides a sharp D-extinction threshold, that is, a threshold
that if crossed, would lead to the eventual elimination of the D-class, independent of initial
conditions (D(0)).

The distribution of drinking types, in the nonlinear relapse rate case, depends not only on
the thresholds Rφ, Rρ, and R0 but also on the size of the initial population of problem
drinkers, D(0). In (Sánchez et al. 2007) the following results were obtained:

1. If R(φ) > 1 then the D-class becomes established.
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2. Whenever Rc < R(φ) < 1 and Rρ < 1 or whenever R(φ) < Rc < 1 the D-class
becomes (eventually) extinct.

3. Whenever Rc < R(φ) < 1 and Rρ > 1 whether or not the D-class becomes established
is a function of the initial size of the class of D-individuals, D(0) (see Figure 1(c), (d)).

Numerical simulations —Figure 1(a), (c), (d)— illustrate the role of initial conditions on
drinking dynamics. Nonlinear relapse leads to a system that supports two socially acceptable
coexisting stable equilibria (D ≡ 0 and D > 0). Where the system ends depends on initial
conditions. Figures 1(a), (b) show bifurcation diagrams for the number of problem drinkers
at equilibrium as a function of the reproductive number R(φ) (with Rρ > 1).

A per-capita relapse rate greater than the per-capita recovery rate, ρ > φ, leads to explosive
growth in the D-class as long as D(0) (the initial population of problem drinkers) is “large
enough” (see Figure 1(a)). The qualitative behavior displayed in Figure 1(a) is commonly
called a “backward” bifurcation (Sánchez et al. 2007). We further observe that once the
population of problem drinkers becomes established (Rc < R(φ) < 1) their extinction can
only be carried out if φ increases to the point where R(φ) < Rc or if ρ decreases to the
point where Rρ < 1. Figures 1(c), (d), display D(t) versus t to illustrate, with a time
series, the effects of initial conditions, D(0). We observe bistability. The size of the initial
number of problem drinkers determines whether or not a D-community becomes established
even under unfavorable conditions (R(φ) < 1). When the per-capita relapse rate equals
the recovery rate, ρ = φ, we observe (Figure 1(b)) that the D-class grows (gradually) with
R(φ); multiple endemic (non-negative) stable D-equilibria will not co-exist in this case.
When ρ = φ, R(φ) < 1 guarantees the eventual extinction of the problem drinking class.

3 A Stochastic Contagion Model

The stochastic model of this section is built from the deterministic model given by System
(1)–(4) and is used to quantify the role of variability on drinking dynamics. Here, we
concentrate on an stochastic analog to the “mean field” model given by Equations (1)–(4),
the deterministic model that supports two positive equilibria (Rc < Rφ < 1 and Rρ > 1).

The derivation of the stochastic model (continuous-time Markov chain) is standard (details
are provided in an Appendix)—see for instance (Allen 2003; Allen and van den Driessche,
2006; Renshaw 1991). We carry out simulations that highlight the differences between
stochastic and deterministic outcomes. Simulation outcomes (distributions) are later used
to contrast the results of stochastic simulations of the same drinking process in small-world
networks.

The average behavior of the stochastic model is described in Table 2. The simulations of this
deterministic version and stochastic analog are computed using identical epidemiological and
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social parameter values. It is not surprising to see overall agreement between the dynamics
of the deterministic model (black curve) and the mean (over 50 realizations) dynamics of
the stochastic model (grey curves) when Rφ > 1 (Figure 2). The mean results are computed
under the condition of non-extinction of the D-class before the preselected time horizon.
Setting Rφ < Rc < 1 leads invariably to the eventual extinction of the D-class in the
deterministic formulation but not always (as expected) in the stochastic formulation (Allen
and van den Driessche 2006; Allen 2003).

In well-established drinking communities (including college students) estimates clearly show
thatRφ > 1. Thus, one may ask whether the existence of backward bifurcations (bi-stability)
is just of theoretical value? If the goal is to prevent the formation of a drinking community
then the above question “makes” sense. However, most often the goal is to reduce or eliminate
the D-class and the existence of a backward bifurcation makes this much harder.

Relapse rates among problem drinkers are high (Miller et al. 2001; Daido 2004). Hence,
the existence of a relapse driven backward bifurcation suggests that efforts to “eliminate”
problem drinkers or reduce problem drinking may be futile as long as “R-individuals” remain
in the same social environment. Substantial reductions in the relapse parameter—with
the ultimate goal of having Rφ < 1—may be extremely difficult to achieve. Furthermore,
treatment and prevention measures even if effective are likely to be insufficient if the goal is
to eliminate the D-class (see bifurcation diagram in Figure 1(a)).

Histograms (based on 50 stochastic realizations) of the number of problem drinkers at a
stoppage time T , denoted by D(T ), are examined when Rφ > 1 (Figure 3(a)) and when
Rφ < 1 (Figure 3(b)). Figure 3(a) shows that when Rφ > 1 the value of D(T ) lies in
[350, 550) while Figure 3(b) shows that the problem drinker class may persist. Nearly forty
percent of the simulations involve result in a small segment of the population in the D-
class (less than 10%) when Rφ < 1 . These results are consistent with those of (Sánchez
et al. 2007), that is, when the relapse rate is larger than the treatment rate (ρ > φ). In
other words, it is possible for a population of problem drinkers to become established even
if Rφ < 1 in a stochastic setting.

4 Drinking Dynamics in Small-world Communities with

High Relapse Rates

A network (graph) is a set of nodes with connections (edges) between them. Graphs provide
visual representations of the contact structure of individuals in a population (Newman 2003).
The fact that all social processes (including drinking) depend on contacts between distinct
individuals has, in part, motivated the study of epidemics on networks (May and Lloyd 2001;
Meyers et al. 2005; Pastor-Satorras and Vespignani 2001; Grabowski and Kosinski 2005).

Watts and Strogatz (Watts and Strogatz 1998) introduced a one-parameter, p, family of
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networks. As the disorder parameter p is varied in [0,1], the graph moves from a regular
lattice to a random graph. The model can be formulated algorithmically as follows: the
initial network is initialized via a one-dimensional periodic ring lattice of N nodes, each
connected to its closest 〈k〉 neighbors (two nodes are neighbors if there is an edge connecting
them). The network is updated by re-wiring each edge with probability p (the disorder
parameter) to a randomly selected node until it reaches “fixed” statistical properties. When
p→ 0 the algorithm recovers the initial lattice but when p→ 1, most edges are rewired, the
resulting network is a random graph (Bollobas 2001). Watts and Strogratz showed that the
use of just a few random long-range connections (p small) drastically reduced the average
distance between any pair of nodes (Watts and Strogatz 1998) —the kind of property that
enhances “transmission”, the “small-world effect”. The effect was postulated based on the
result of a series of letter-forwarding experiments carried out by S. Milgram (Milgram 1967).
The statistical properties of small-world and “similar” networks have been studied (Watts
and Strogatz 1998; Newman et al. 2006; and references therein).

Here we model community structure as a small-world network. The terms network and
community are used interchangeably, with nodes representing individuals and edges denoting
the social connections or interactions, the kind of “social mixing” that may lead to node
“transition” (from the moderate drinker into the problem drinker state). Nodes can be in
one of three distinct states: moderate drinker, problem drinker, and recovered drinker. The
stochastic transitions between nodes’ states are modeled as functions of time and the number
of “neighbors” in particular states (transition rates). If one starts with a community with N
nodes where Node i (1 ≤ i ≤ N) has δ(i, t) neighbors who, at time t, are in the state “problem
drinker”, then the probabilities that Node i changes its state given that it alters its state, at
each time step are: from moderate to problem drinker, 1− exp(−βδ(i, t)); from problem to
recovered, 1− exp(−φ); and from recovered to problem drinker, 1− exp(−ρτ (t)δ(i, t)). This
formulation (see Table 3) defines a stochastic process on the random variables Sp(t), Dp(t),
and Rp(t). These random variables can also be thought of as parameterized by the disorder
parameter p ∈ [0, 1].

Drinking as a “contagious” process is simulated as follows: the stochastic generation of a
small-world network (Watts and Strogatz 1998) is followed by multiple stochastic realizations
of the drinking process defined in Table 3 on the selected small-world network. The parameter
baseline values are summarized in Table 4. Histograms of Dp(T ) and Rp(T ), where T denotes
the stoppage time in the simulations (see Table 4), are computed for each value of p (see
Figure 4). Figures 5 and 6 highlight the mean and variance (over 20 realizations) of Dp(T )
and Rp(T ) as a function of p (Chowell and Castillo-Chavez 2003; Chowell et al. 2006b).

A drinking wave is detected even as the size of the problem drinking class goes to zero for
the case ρ = 0 (no relapse) with Rφ > 1. This feature agrees with deterministic (Brauer and
Castillo-Chavez 2001) and stochastic “theories” (Allen 2003) on single-outbreak SIR models.
Figure 5(a) shows that variations on the network structure (modeled by p) have no effect on
the mean size of the problem drinker class Dp(T ) . However, the mean size of the recovered
class Rp(T ) exhibits a phase transition as p→ 10−1 (Figure 5(b)). Hence, in the absence of
vital dynamics (births and deaths) and relapse, we conclude that community structure does
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affect the average size of the problem drinking class during the drinking wave. Small values
of “p” lead to a phase transition (Newman 2003), a “small world” effect.

Figure 6 illustrates a worst case scenario in which the average relapse probability is near
one for the majority of the time. To see the impact of high, nearly stationary relapse rates,
we let 〈k〉 denote the average number of connections per node in a one-dimensional lattice
when p = 0 and carry out simulations on this network with the average relapse probability
(1 − e−ρτ (t)〈k〉) ≈ 1. The relapse rate ρτ (t) (defined in Table 4) is modeled as a stepwise
constant function that drops its value at precisely t = τ . The worst case scenario here
corresponds to the case where τ =∞. In general, when relapse rates are high for too long,
small-world structures (any value of p) have no effect on the mean sizes of the problem and
recovered drinking classes. In fact, the size of the problem drinking community is above
60% regardless of the value of p (other parameters kept fixed). Furthermore, we see that
on average Dp(T ) + Rp(T ) = N when relapse rates are high. That is, every member of this
closed population becomes a problem drinker at least once regardless of the value of p.

Reducing the relapse rate from 0.90 to 0.12 at precisely the time τ reduces the average relapse
probability from 1 − e−0.90〈k〉 ≈ 1.00 to 1 − e−0.12〈k〉 ≈ 0.50 at time τ . Figure 7 shows the
impact of increasing the values of τ = 3, 5, 7, 10. We do not observe a lot of differences in
the average values of Dp(T ) and Rp(T ) as a function of τ . However, these averages “improve”
in the “right” direction as τ reduces its value from τ =∞ towards τ = 0.

5 Discussion

Relapse has a significant impact on the dynamics of addictive behavior (Gonzalez et al. 2003;
Sánchez et al. 2007; Song et al. 2006; and references therein). The use of a simple system
of differential equations (Sánchez et al. 2007) shows that for socially-intense processes like
drinking, the reproductive number, Rφ is not always the key. Frequency dependent relapse
rates play a huge role. Frequency dependent relapse rates do increase the possibility of severe
outbreaks within “well-behaved” communities, but more importantly they also increase the
likelihood of failure of programs aimed at eliminating drinking. Sánchez et al. (Sánchez et al.
2007) clearly delineated the possibilities from their mathematical analysis of a simple model
where all the mixing takes place in the same drinking environment. Mubayi et al. (Mubayi
et al. 2008) recently explore the impact of individuals’ movement between heterogeneous
drinking environments. They showed that frequent movement between distinct environments
can have a significant (negative) effect on the distribution of drinking types. Here, we only
focused on exploring the predictions of (Sánchez et al. 2007) in two stochastic settings. The
stochastic analog (continuous time Markov chain) of Sánchez et al.’s deterministic model was
used to highlight the role of variability. The results were consistent with those of Sanchez
et al. with the usual caveats (Allen 2003). A small-world network was used to highlight the
very strong role played by relapse.
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In fact, our study of drinking in a small-world network parameterized by the disorder param-
eter p leads to the following results: When there is no relapse (ρ = 0), we recovered the well
understood phase transition effect previously identified from SIR simulations on small-world
networks (Newman 2003), as p crosses a critical value; the introduction of high relapse rates
“eliminates” the role of “p”. In other words, the form of social connections (who interacts
with whom) in populations experiencing strong patterns of relapse has no impact on the
prevalence of addictive behaviors. Hence, if relapse rates are high then emphasis on pro-
grams that generate substantial and sustained reductions in “mixing” will not be effective.
Reducing residence times in risky environments which promote relapse, reducing recruitment
into drinking communities and reducing movement between drinking venues are more likely
to be effective (Mubayi et al. 2008).

6 Appendix

Transitions between drinking classes involve discrete events which change the number of
individuals in every class, one at a time. For example, when a drinking “contagion” event
occurs, the number of moderate drinkers is decreased by one, while the number of problem
drinkers increases by one. The probability that an event takes place during an infinitesimal
time interval [t, t + dt] is calculated from the average rates in the deterministic model. In
this example, the “conversion” event occurs at the rate of βS(t)D(t)/N and the probability
that it happens in [t, t + dt] is approximately (βS(t)D(t)/N) dt. All the events, their rates
of occurrence, and the probabilities at which they take place are listed in Table 2.

It is assumed that the events are described by independent Poisson processes (Allen, 2003).
The term

E = µN + µS + µD + µR + βSD/N + φD + ρRD/N,

denotes the rate at which an event occurs at time t. The time between events is exponentially
distributed with mean 1/E. The time at which the next event happens is found, for each
realization, by sampling from an exponential distribution with mean 1/E.

To decide which event takes place (once it is known that an event occurs), we divide up
the interval (0, E) into subintervals that correspond to the relative occurrence probabilities
of the various events. For example, given that an event has occurred, the probability that
it is a recruitment is µN/E, the probability of the removal of a moderate drinker is µS/E,
the probability of the removal of a problem drinker is µD/E, etc. A number U is selected
randomly from the uniform distribution on (0, 1) and an event is selected if this value falls
within the appropriate subinterval. For instance, the event is a recruitment if U satisfies
0 < U < µN/E, a moderate drinker removal if U lies between µN/E and (µN + µS)/E, a
problem drinker removal if U lies between (µN +µS)/E and (µN +µS+µD)/E, and so on.
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[10] Brauer, F., Castillo-Chávez, C.: Mathematical Models in Population Biology and Epi-
demiology. Springer-Verlag, New York, (2001).

[11] Braun, R. J., Wilson, R. A., Pelesko, J. A., Buchanan, J. R.: Applications of small-world
network theory in alcohol epidemiology. J. Stud. Alcohol 67, 591-599 (2006).

[12] Busenberg, S., Castillo-Chavez, C.: Interaction, pair formation and force of infection
terms in sexually transmitted diseases. In: Castillo-Chavez, C. (ed.) Mathematical and
Statistical Approaches to AIDS Epidemiology. Lecture Notes Biomathematics, Vol. 83,
pp. 280-300. Springer-Verlag, Berlin, (1989).

[13] Busenberg, S., Castillo-Chavez, C.: A general solution of the problem of mixing of
subpopulation, and its application to risk- and age-structured epidemic models. IMA J.
Math. Appl. Med. Biol. 8, 1-29 (1991).
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7 Tables

Table 1: State variables and parameters of the contagion model in (Sánchez et al. 2007).

State variable Description

S(t) Number of occasional and moderate drinkers at time t
D(t) Number of problem drinkers at time t
R(t) Number of recovered individuals at time t

Parameter Description

β Effective transmission rate (average number of effective interactions
per occasional and problem drinker per unit of time)

ρ Community-driven relapse rate (average number of effective interactions
per problem drinker and recovered individual per unit of time)

φ Per-person treatment rate
µ Per-person departure rate from the drinking environment
N Community size (permanent population size)

Table 2: Collects the transition rates and infinitestimal probabilities of occurrence of the
events linked to a single drinking model outbreak. The dependence on t is omitted, writing
S, D, and R, instead of S(t), D(t), and R(t), respectively.

Event Transition Rate at which Probability of transition
event occurs in time interval [t, t+ dt]

Recruitment S → S + 1 µN µNdt
Moderate drinker removal S → S − 1 µS µSdt
Problem drinker removal D → D − 1 µD µDdt
Sober removal R→ R− 1 µR µRdt
Drinking contagion S → S − 1, D → D + 1 βS D

N
βS D

N
dt

Recovery D → D − 1, R→ R + 1 φD φDdt
Relapse D → D + 1, R→ R− 1 ρRD

N
ρRD

N
dt
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Table 3: State variables, parameters, events, and transition probabilities of the drinking
dynamics model in small-world communities.

State variable Description

δ(i, t) Number of problem drinker neighbors of node i at time t
Sp(t) Total number of moderate drinkers at time t in a

small-world community parameterized by p
Dp(t) Total number of problem drinkers at time t in a

small-world community parameterized by p
Rp(t) Total number of recovered individuals at time t in a

small-world community parameterized by p

Parameter Description

β Transmission rate
φ Per-person treatment rate

ρτ (t) Time-dependent relapse rate

Event Probability of transition

Node i changes from moderate into problem drinker 1− e−βδ(i,t)
Node i switches from problem drinker into recovered 1− e−φ
Node i changes from recovered into problem drinker 1− e−ρτ (t)δ(i,t)

Table 4: Parameter values utilized in simulations of drinking dynamics in small-world com-
munities.

Parameter Description Baseline value

〈k〉 Average connectivity per node 6
N Community size 1000
β Transmission rate 0.12
φ Per-person treatment rate 0.7

ρτ (t) Time-dependent relapse rate ρτ (t) = 0.90 whenever t < τ
ρτ (t) = 0.12 if t ≥ τ

T Stoppage time 4000
Dp(0) Initial number of problem drinkers chosen

uniformly at random in every community 5
Number of stochastic realizations 20
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8 Figures
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Figure 1: Numerical simulations of drinking model in a homogeneous drinking community.
Panel (a) shows a bifurcation diagram that involves the number of problem drinkers at
equilibrium versus the reproductive numberRφ, when φ < ρ. Panel (b) displays a bifurcation
diagram illustrating the special case when the recovery rate equals the relapse rate (φ = ρ =
0.50). Here, Rφ < 1 provides a sufficient condition that guarantees the eventual extinction of
the population of problem drinkers. Panels (c) and (d) display D(t) versus t under different
initial conditions. In Panel (c) the initial conditions are S(0) = 0.98N , D(0) = 0.02N and
R(0) = 0; in Panel (d) they are S(0) = 0.95N , D(0) = 0.05N and R(0) = 0. The parameter
values used are: N = 10000, µ = 0.50, φ = 0.50 and ρ = 7.00, 0.20 ≤ β ≤ 1.50 (Panel (a));
N = 10000, µ = 0.50, φ = ρ = 0.50, 0.20 ≤ β ≤ 1.50 (Panel (b)); N = 10000, µ = 0.50,
φ = 0.50 and ρ = 7.00, β = 0.90 (Panels (c) and (d)).
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Figure 2: Results from numerical simulations. 50 stochastic realizations (grey curves) and
numerical solutions of the deterministic (black curve) problem drinker class D(t) versus time
t. For these simulations the following values of parameters were used: N = 1000, β = 1.20,
ρ = 7.00, φ = 0.50 and µ = 0.50 with Rφ = 1.20 and the initial number of problem drinkers
D(0) = 5.
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Figure 3: Histograms of D(T ), number of problem drinkers at stoppage time T = 50000,
resulting from 50 stochastic realizations with Rφ > 1 (Panel (a)) and Rφ < 1 (Panel (b)).
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Figure 4: Histograms of the total number of problem drinkers and recovered individuals,
Dp(T ) and Rp(T ), respectively, at a stoppage time T . Samples obtained from 20 stochastic
realizations in simulated communities with p = 3.02× 10−4 in community size 1000 (nodes).
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Figure 5: Average and variance of Dp(T ) and Rp(T ) as functions of the simulated community
architecture parameterized by p (logarithmic scale). The mean (circles) and mean plus and
minus one standard deviation (dash curves) are computed from 20 stochastic realizations for
each fixed value of p. Panels (a) and (b) display results of simulated contagion in small-world
communities in the absence of relapse, ρ ≡ 0.
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Figure 6: Dependence of the average and variance of Dp(T ) and Rp(T ) as a function of
community structure p (logarithmic scale). Average (circles) and one standard deviation
added to and subtracted from the average (dash curves) are calculated from 20 stochastic
realizations for each fixed value of p. The results shown in Panels (a) and (b) assess a “worst
case scenario” of having on average every recovered node going into relapse with probability
nearly one, in symbols 1− e−ρτ (t)〈k〉 ≈ 1.

22



10−4 10−3 10−2 10−1 100

0

100

200

300

400

500

600

700

Network disorder parameter p

M
ea

n 
D

p(T
)

 

 

!=3
!=5
!=7
!=10
!="

10−4 10−3 10−2 10−1 100

0

100

200

300

400

500

600

700

800

900

1000

Network disorder parameter p

M
ea

n 
R

p(T
)

 

 

!=3
!=5
!=7
!=10
!="

(a) (b)

Figure 7: Average Dp(T ) and Rp(T ) as functions of the community structure, p. Panels (a)
and (b) display the results obtained from using a time-dependent relapse rate ρτ (t). The
relapse rate jumps from 0.90 to 0.12 at time t = τ , that is, every node diminishes its proba-
bility of transition from the recovered into the problem drinker state by half (probabilities go
from 1− e−0.90〈k〉 ≈ 1 to 1− e−0.12〈k〉 ≈ 0.5) Panels (a) and (b) show the changes in averages
as a function of the timing in the jump (τ). The relapse reduction at times, τ = 3 (upward
triangles), τ = 5 (diamonds), τ = 7 (right triangles), τ = 10 (circles) are highlighted. The
averages displayed in Figure 6 are for the case τ =∞ (squares).
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