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Abstract

We discuss methods for a priori selection of parameters to be estimated in inverse
problem formulations (such as Maximum Likelihood, Ordinary and Generalized Least
Squares) for dynamical systems with numerous state variables and an even larger num-
ber of parameters. We illustrate the ideas with an in-host model for HIV dynamics
which has been successfully validated with clinical data and used for prediction.
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1 Introduction

There are many topics of great importance and interest in the areas of modeling and inverse
problems which are properly viewed as essential in the use of mathematics and statistics
in scientific inquiries. A brief, noninclusive list of topics include the use of traditional
sensitivity functions (TSF) and generalized sensitivity functions (GSF) in experimental
design (what type and how much data is needed, where/when to take observations) [9,
10, 11, 16, 56], choice of mathematical models and their parameterizations (verification,
validation, model selection and model comparison techniques) [7, 12, 13, 17, 21, 22, 24,
25, 41], choice of statistical models (observation process and sampling errors, residual
plots for statistical model verification, use of asymptotic theory and bootstrapping for
computation of standard errors, confidence intervals) [7, 14, 30, 31, 54, 55], choice of cost
functionals (MLE, OLS, WLS, GLS, etc.,) [7, 30], as well as parameter identifiability and
selectivity. There is extensive literature on each of these topics and many have been treated
in surveys in one form or another ([30] is an excellent monograph with many references on
the statistically related topics) or in earlier lecture notes [7].

We discuss here an enduring major problem: selection of which model parameters
can be readily and reliably (with quantifiable uncertainty bounds) estimated in an inverse
problem formulation. This is especially important in many areas of biological modeling
where often one has large dynamical systems (many state variables), an even larger number
of unknown parameters to be estimated and a paucity of longitudinal time observations or
data points. As biological and physiological models (at the cellular, biochemical pathway
or whole organism level) become more sophisticated (motivated by increasingly detailed
understanding - or lack thereof - of mechanisms), it is becoming quite common to have
large systems (10-20 or more differential equations), with a plethora of parameters (25-100)
but only a limited number (50-100 or fewer) of data points per individual organism. For
example, we find models for the cardiovascular system [16, Chapter 1] (where the model has
16 state variables and 22 parameters) and [50, Chapter 6] (where the model has 22 states
and 55 parameters), immunology [48] (8 states, 24 parameters), metabolic pathways [32] (8
states, 35 parameters) and HIV progression [8, 43]. Fortunately, there is a growing recent
effort among scientists to develop quantitative methods based on sensitivity, information
matrices and other statistical constructs (see for example [9, 10, 11, 23, 28, 37, 38, 59]) to aid
in identification or parameter estimation formulations. We discuss here one approach using
sensitivity matrices and asymptotic standard errors as a basis for our developments. To
illustrate our discussions, we will use a recently developed in-host model for HIV dynamics
which has been successfully validated with clinical data and used for prediction [4, 8].

The topic of system and parameter identifiability is actually an old one. In the con-
text of parameter determination from system observations or output it is at least forty
years old and has received much attention in the peak years of linear system and con-
trol theory in the investigation of observability, controllability and detectability [6, 18, 19,
33, 39, 44, 46, 52, 53]. These early investigations and results were focused primarily on
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engineering applications, although much interest in other areas (e.g., oceanography, biol-
ogy) has prompted more recent inquiries for both linear and nonlinear dynamical systems
[5, 15, 29, 35, 42, 47, 58, 59, 60, 61].

1.1 A Mathematical Model for HIV Progression with Treatment Inter-
ruption

We summarize and use as an illustrative example one of the many dynamic models for
HIV progression found in an extensive literature (e.g., see [1, 2, 3, 4, 8, 20, 26, 49, 51, 57]
and the many references therein). For our example model, the dynamics of in-host HIV
are described by the interactions between uninfected and infected type 1 target cells (𝑇1
and 𝑇 ∗

1 ) (CD4+ T-cells), uninfected and infected type 2 target cells (𝑇2 and 𝑇 ∗
2 ) (such

as macrophages or memory cells, etc.), infectious free virus 𝑉𝐼 , and immune response 𝐸
(cytotoxic T-lymphocytes CD8+) to the infection. This model, which was developed and
studied in [1, 4] and later extended in subsequent efforts (e.g., see [8]), is essentially one
suggested in [26], but includes an immune response compartment and dynamics as in [20].
The model equations are given by

𝑇1 = 𝜆1 − 𝑑1𝑇1 − (1− 𝜖1(𝑡)) 𝑘1𝑉𝐼𝑇1

𝑇2 = 𝜆2 − 𝑑2𝑇2 − (1− 𝑓𝜖1(𝑡))𝑘2𝑉𝐼𝑇2

𝑇 ∗
1 = (1− 𝜖1(𝑡))𝑘1𝑉𝐼𝑇1 − 𝛿𝑇 ∗

1 −𝑚1𝐸𝑇 ∗
1

𝑇 ∗
2 = (1− 𝑓𝜖1(𝑡))𝑘2𝑉𝐼𝑇2 − 𝛿𝑇 ∗

2 −𝑚2𝐸𝑇 ∗
2

�̇�𝐼 = (1− 𝜖2(𝑡))10
3𝑁𝑇 𝛿(𝑇

∗
1 + 𝑇 ∗

2 )− 𝑐𝑉𝐼

−(1− 𝜖1(𝑡))10
3𝑘1𝑇1𝑉𝐼 − (1− 𝑓𝜖1(𝑡))10

3𝑘2𝑇2𝑉𝐼

�̇� = 𝜆𝐸 +
𝑏𝐸(𝑇 ∗

1 +𝑇 ∗
2 )

(𝑇 ∗
1 +𝑇 ∗

2 )+𝐾𝑏
𝐸 − 𝑑𝐸(𝑇 ∗

1 +𝑇 ∗
2 )

(𝑇 ∗
1 +𝑇 ∗

2 )+𝐾𝑑
𝐸 − 𝛿𝐸𝐸,

(1)

together with an initial condition vector (𝑇1(0), 𝑇
∗
1 (0), 𝑇2(0), 𝑇

∗
2 (0), 𝑉𝐼 (0), 𝐸(0))𝑇 .

The differences in infection rates and treatment efficacy help create a low, but non-zero,
infected cell steady state for 𝑇 ∗

2 , which is compatible with the idea that macrophages or
memory cells may be an important source of virus after T-cell depletion. The popula-
tions of uninfected target cells 𝑇1 and 𝑇2 may have different source rates 𝜆𝑖 and natural
death rates 𝑑𝑖. The time-dependent treatment factors 𝜖1(𝑡) = 𝜖1𝑢(𝑡) and �̄�2(𝑡) = 𝜖2𝑢(𝑡)
represent the effective treatment impact of a reverse transcriptase inhibitor (RTI) (that
blocks new infections) and a protease inhibitor (PI) (which causes infected cells to produce
non-infectious virus), respectively. The RTI is potentially more effective in population 1
(𝑇1, 𝑇

∗
1 ) than in population 2 (𝑇2, 𝑇

∗
2 ), where the efficacy is 𝑓𝜖1, with 𝑓 ∈ [0, 1]. The rela-

tive effectiveness of RTIs is modeled by 𝜖1 and that of PIs by 𝜖2, while the time-dependent
treatment function 0 ≤ 𝑢(𝑡) ≤ 1 represents therapy levels drug level, with 𝑢(𝑡) = 0 for fully
off and 𝑢(𝑡) = 1, for fully on. Although HIV treatment is nearly always administered as
combination therapy, the model allows the possibility of monotherapy, even for a limited
period of time, implemented by considering separate treatment functions 𝑢1(𝑡), 𝑢2(𝑡) in the
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treatment factors.
As in [1, 4], for our numerical investigations we consider a log-transformed and reduced

version of the model. This transformation is frequently used in the HIV modeling literature
because of the large differences in orders of magnitude in state values in the model and the
data and to guarantee non-negative state values as well as because of certain probabilistic
considerations (for further discussions see [4]). This results in the nonlinear system of
differential equations

𝑑𝑥1
𝑑𝑡

=
10−𝑥1

ln(10)
(𝜆1 − 𝑑110

𝑥1 − (1− 𝜀1(𝑡))𝑘110
𝑥510𝑥1) (2)

𝑑𝑥2
𝑑𝑡

=
10−𝑥2

ln(10)
((1− 𝜀1(𝑡))𝑘110

𝑥510𝑥1 − 𝛿10𝑥2 −𝑚110
𝑥610𝑥2) (3)

𝑑𝑥3
𝑑𝑡

=
10−𝑥3

ln(10)
(𝜆2 − 𝑑210

𝑥3 − (1− 𝑓𝜀1(𝑡))𝑘210
𝑥510𝑥3) (4)

𝑑𝑥4
𝑑𝑡

=
10−𝑥4

ln(10)
((1− 𝑓𝜀1(𝑡))𝑘210

𝑥510𝑥3 − 𝛿10𝑥4 −𝑚210
𝑥610𝑥4) (5)

𝑑𝑥5
𝑑𝑡

=
10−𝑥5

ln(10)
((1− 𝜀2(𝑡))10

3𝑁𝑇 𝛿(10
𝑥2 + 10𝑥4)− 𝑐10𝑥5 −

(1− 𝜀1(𝑡))𝜌110
3𝑘110

𝑥110𝑥5 − (1− 𝑓𝜀1(𝑡))𝜌210
3𝑘210

𝑥310𝑥5) (6)

𝑑𝑥6
𝑑𝑡

=
10−𝑥6

ln(10)

(
𝜆𝐸 +

𝑏𝐸(10
𝑥2 + 10𝑥4)

(10𝑥2 + 10𝑥4) +𝐾𝑏
10𝑥6 − 𝑑𝐸(10

𝑥2 + 10𝑥4)

(10𝑥2 + 10𝑥4) +𝐾𝑑
10𝑥6 − 𝛿𝐸10

𝑥6

)
,(7)

where the changes of variables are defined by

𝑇1 = 10𝑥1 , 𝑇 ∗
1 = 10𝑥2 , 𝑇2 = 10𝑥3 , 𝑇 ∗

2 = 10𝑥4 , 𝑉𝐼 = 10𝑥5 , 𝐸 = 10𝑥6 . (8)

We note that this model contains six state variables and 22 (in general, unknown) system
parameters given by

𝜃2 = (𝜆1, 𝑑1, 𝜖1, 𝑘1, 𝜆2, 𝑑2, 𝑓, 𝑘2, 𝛿,𝑚1,𝑚2, 𝜖2, 𝑁𝑇 , 𝑐, 𝜌1, 𝜌2, 𝜆𝐸 , 𝑏𝐸 ,𝐾𝑏, 𝑑𝐸 ,𝐾𝑑, 𝛿𝐸).

A list of the model parameters along with units of these model parameters are given
below in Table 1.

The initial conditions for equations (2)–(7) are denoted by 𝑥𝑖(𝑡0) = 𝑥0𝑖 , for 𝑖 = 1, . . . , 6.
We will also consider the initial conditions as unknowns and we use the following notation
for the vector of parameters and initial conditions:

𝜃 = (𝜃1, 𝜃2)

where
𝜃1 = (𝑥01, 𝑥

0
2, 𝑥

0
3, 𝑥

0
4, 𝑥

0
5, 𝑥

0
6)

𝑇 .
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Table 1: Parameters for the HIV model.

Parameter Units Description

𝜆1
cells

ml day
Target cell type 1 production rate

𝑑1
1

day
Target cell type 1 death rate

𝜖1 — Target cell type 1 treatment efficacy

𝑘1
ml

virions day
Target cell type 1 infection rate

𝜆2
cells

ml day Target cell type 2 production rate

𝑑2
1

day
Target cell type 2 death rate

𝑓 — Treatment efficacy reduction in target cell type 2

𝑘2
ml

virions day Target cell type 2 infection rate

𝛿 1
day

Infected cell death rate

𝑚1
ml

cells day Type 1 immune-induced clearance rate

𝑚2
ml

cells day
Type 2 immune-induced clearance rate

𝜖2 — Target cell type 2 treatment efficacy

𝑁𝑇
virions
cell

Virions produced per infected cell

𝑐 1
day

Virus natural death rate

𝜌1
virions
cell

Average number of virions infecting a type 1 cell

𝜌2
virions
cell

Average number of virions infecting a type 2 cell

𝜆𝐸
cells

ml day
Immune effector production rate

𝑏𝐸
1

day
Maximum birth rate for immune effectors

𝐾𝑏
cells
ml

Saturation constant for immune effector birth

𝑑𝐸
1

day
Maximum death rate for immune effectors

𝐾𝑑
cells
ml

Saturation constant for immune effector death

𝛿𝐸
1

day
Natural death rate for immune effectors
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As reported in [1, 4], data to be used with this model in inverse or parameter estimation
problems typically consisted of monthly observations over a 3 year period (so approximately
36 longitudinal data points per patient) for the states 𝑇1 + 𝑇 ∗

1 and 𝑉 . While this inverse
problem is relatively “small” compared to many of those found in the literature, it is still
represents a nontrivial estimation challenge and is more than sufficient to illustrate the
ideas and methodology we discuss in this presentation. Other difficult aspects (censored
data requiring use of the Expectation Maximization algorithm as well as use of residual
plots in attempts to validate the correctness of choice of corresponding statistical models
introduced and discussed in the next section) of such inverse problems are discussed in the
review chapter [7] and will not be pursued here.
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2 Statistical Models for the Observation Process

One has errors in any data collection process and the presence of this error is reflected
in any parameter estimation results one might obtain. To understand and treat this, one
usually specifies a statistical model for the observation process in addition to the mathe-
matical model representing the dynamics. To illustrate ideas here we use ordinary least
squares (OLS) consistent with an error model for absolute error in the observations. For
a discussion of other frameworks (maximum likelihood in the case of known error distri-
butions, generalized least squares appropriate for relative error models) see [7]. Here the
OLS estimation is based on the mathematical model for in-host HIV dynamics described
above. The observation process is formulated assuming there exists a vector 𝜃0 ∈ ℝ

𝑝, re-
ferred to as the true parameter vector, for which the model describes the log-scaled total
number of CD4+ T-cells (uninfected and infected) exactly. It is also reasonably assumed
that each of 𝑛 longitudinal observations {𝑌𝑖}𝑛𝑖=1 is affected by random deviations from the
true underlying process. That is, if the mathematical model output is denoted by

𝑧(𝑡𝑖; 𝜃0) = log10

(
10𝑥1(𝑡𝑖;𝜃0) + 10𝑥2(𝑡𝑖;𝜃0)

)
, (9)

then the statistical model for the scalar observation process is

𝑌𝑖 = 𝑧(𝑡𝑖; 𝜃0) + ℰ𝑖 for 𝑖 = 1, . . . , 𝑛. (10)

The errors ℰ𝑖 are assumed to be random variables satisfying the following assumptions:

(i) the errors ℰ𝑖 have mean zero, 𝐸[ℰ𝑖] = 0;

(ii) the errors ℰ𝑖 have finite common variance, var(ℰ𝑖) = 𝜎2
0 < ∞;

(iii) the errors ℰ𝑖 are independent (i.e., cov(ℰ𝑖, ℰ𝑗) = 0 whenever 𝑖 ∕= 𝑗) and identically
distributed.

Assumptions (i)–(iii) imply that the mean of the observation is equal to the model output,
𝐸[𝑌𝑖] = 𝑧(𝑡𝑖; 𝜃0), and the variance in the observations is constant in time, var(𝑌𝑖) = 𝜎2

0.
The estimator 𝜃𝑂𝐿𝑆 = 𝜃𝑛𝑂𝐿𝑆 minimizes

𝑛∑
𝑖=1

[𝑌𝑖 − 𝑧(𝑡𝑖; 𝜃)]
2. (11)

From [54] we find that under a number of regularity and sampling conditions, as 𝑛 → ∞,
𝜃𝑂𝐿𝑆 is approximately distributed according to a multivariate normal distribution, i.e.,

𝜃𝑛𝑂𝐿𝑆 ∼ 𝒩𝑝 (𝜃0,Σ
𝑛
0 ) , (12)
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where Σ𝑛
0 = 𝜎2

0[𝑛Ω0]
−1 ∈ ℝ

𝑝×𝑝 and

Ω0 = lim
𝑛→∞

1

𝑛
𝜒𝑛(𝜃0)

𝑇𝜒𝑛(𝜃0). (13)

Asymptotic theory requires existence of this limit and non-singularity of Ω0. The 𝑝 × 𝑝
matrix Σ𝑛

0 is the covariance matrix, and the 𝑛×𝑝 matrix 𝜒𝑛(𝜃0) is known as the sensitivity
matrix of the system, and is defined as

𝜒𝑛
𝑖𝑗(𝜃0) =

∂𝑧(𝑡𝑖; 𝜃)

∂𝜃𝑗

∣∣∣∣
𝜃=𝜃0

1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑝. (14)

If 𝑔 ∈ ℝ
6 denotes the right-side of Equations (2)–(7), then numerical values of 𝜒𝑛(𝜃) are

readily calculated, for a particular 𝜃, by solving

𝑑𝑥

𝑑𝑡
= 𝑔(𝑡, 𝑥(𝑡; 𝜃); 𝜃) (15)

𝑑

𝑑𝑡

∂𝑥

∂𝜃
=

∂𝑔

∂𝑥

∂𝑥

∂𝜃
+

∂𝑔

∂𝜃
, (16)

from 𝑡 = 𝑡0 to 𝑡 = 𝑡𝑛. One could alternatively solve for the sensitivity matrix using
difference quotients (usually less accurately) or by using automatic differentiation software
(for additional details on sensitivity matrix calculations see [7, 9, 27, 28, 34, 36]).

The estimate 𝜃𝑂𝐿𝑆 = 𝜃𝑛𝑂𝐿𝑆 is a realization of the estimator 𝜃𝑂𝐿𝑆, and is calculated
using a realization {𝑦𝑖}𝑛𝑖=1 of the observation process {𝑌𝑖}𝑛𝑖=1, while minimizing (11) over
𝜃. Moreover, the estimate 𝜃𝑂𝐿𝑆 is used in the calculation of the sampling distribution for
the parameters. The error variance 𝜎2

0 is approximated by

�̂�2
𝑂𝐿𝑆 =

1

𝑛− 𝑝

𝑛∑
𝑖=1

[𝑦𝑖 − 𝑧(𝑡𝑖; 𝜃𝑂𝐿𝑆)]
2, (17)

while the covariance matrix Σ𝑛
0 is approximated by

Σ̂𝑛
𝑂𝐿𝑆 = �̂�2

𝑂𝐿𝑆

[
𝜒(𝜃𝑛𝑂𝐿𝑆)

𝑇𝜒(𝜃𝑛𝑂𝐿𝑆)
]−1

. (18)

As discussed in [7, 30, 54] an approximate for the sampling distribution of the estimator
is given by

𝜃𝑂𝐿𝑆 = 𝜃𝑛𝑂𝐿𝑆 ∼ 𝒩𝑝(𝜃0,Σ
𝑛
0 ) ≈ 𝒩𝑝(𝜃

𝑛
𝑂𝐿𝑆 , Σ̂

𝑛
𝑂𝐿𝑆). (19)

Asymptotic standard errors can be used to quantify uncertainty in the estimation, and
they are calculated by taking the square roots of the diagonal elements of the covariance
matrix Σ̂𝑛

𝑂𝐿𝑆, i.e.,

𝑆𝐸𝑘(𝜃
𝑛
𝑂𝐿𝑆) =

√
(Σ̂𝑛

𝑂𝐿𝑆)𝑘𝑘, 𝑘 = 1, . . . , 𝑝. (20)
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3 Subset Selection Algorithm

The focus of our presentation here is how one chooses a priori (i.e., before any inverse
problem calculations are carried out) which parameters and initial conditions can be read-
ily estimated with a typical longitudinal data set. That is, from the parameters 𝜃2 and
initial conditions 𝜃1, which components of 𝜃 = (𝜃1, 𝜃2) yield a subset of readily identifiable
parameters and initial conditions? We illustrate an algorithm, developed recently in [28],
to select parameter vectors that can be estimated from a given data set using an ordinary
least squares inverse problem formulation (similar ideas apply if one is using a relative error
statistical model and generalized least squares formulations). The algorithm searches all
possible parameter vectors and selects some of them based on two main criteria: (i) full
rank of the sensitivity matrix, and (ii) uncertainty quantification by means of asymptotic
standard errors. Prior knowledge of a nominal set of values for all parameters along with
the observation times for data (but not the values of the observations) will be required for
our algorithm. Before describing the algorithm in detail and illustrating its use, we provide
some motivation underlying the steps which involve the sensitivity matrix 𝜒 of (14) and
the Fisher Information Matrix ℱ = 𝜒𝑇𝜒.

Ordinary least squares problems involve choosing Θ = 𝜃𝑂𝐿𝑆 to minimize the difference
between observations 𝑌 and model output 𝑧(𝜃), i.e., minimize ∣𝑌 − 𝑧(𝜃)∣ (here we use ∣ ⋅ ∣
for the Euclidean norm in ℝ

𝑛). Replacing the the model with a first order linearization
about 𝜃0, we then wish to minimize

∣𝑌 − 𝑧(𝜃0)−∇𝜃𝑧(𝜃0)[𝜃 − 𝜃0]∣.
If we use the statistical model 𝑌 = 𝑧(𝜃0)+ℰ and let 𝛿𝜃 = 𝜃− 𝜃0, we thus wish to minimize

∣ℰ − 𝜒(𝜃0)𝛿𝜃∣,
where 𝜒 = ∇𝜃𝑧 is the 𝑛 × 𝑝 sensitivity of (14). This is a standard optimization problem
[45, Section 6.11] whose solution can be given using the pseudo inverse 𝜒† defined in terms
of minimal norm solutions of the optimization problem and satisfying 𝜒† = (𝜒𝑇𝜒)†𝜒𝑇 =
ℱ†𝜒𝑇 . The solution is

𝛿Θ = 𝜒†ℰ
or

Θ = 𝜃0 + 𝜒†ℰ = 𝜃0 +ℱ†𝜒𝑇ℰ .
If ℱ is invertible, then the solution (to first order) of the OLS problem is

Θ = 𝜃0 + ℱ−1𝜒𝑇ℰ . (21)

From these calculations, we see that the rank of 𝜒 and the conditioning (or ill-conditioning)
of ℱ play a significant role in solving OLS inverse problems. Observe that the error (or
noise) ℰ in the data will in general be amplified as the ill-conditioning of ℱ increases. We
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further note that the 𝑛×𝑝 sensitivity matrix 𝜒 is of full rank 𝑝 if and only if the 𝑝×𝑝 Fisher
matrix ℱ has rank 𝑝, or equivalently, is nonsingular. These underlying considerations have
motivated a number of efforts (e.g., see [9, 10, 11]) on understanding the conditioning of
the Fisher matrix as a function of the number 𝑛 and longitudinal locations {𝑡𝑖}𝑛𝑖=1 of data
points as a key indicator for well-formulated inverse problems and as a tool in optimal
design, especially with respect to computation of uncertainty (standard errors, confidence
intervals) in parameter estimates.

Thus we use an algorithm which first seeks sub-vectors of the parameter vector 𝜃 for
which the corresponding sensitivity matrix has full rank and then use the normalized
diagonals of the covariance matrix (the coefficients of variation) to rank the parameters
among the resulting sub-vectors according to their potential for reliability in estimation.

In view of the comments above (which are very local in nature–both the sensitivity
matrix and the Fisher Information Matrix are local quantities), one should be pessimistic
about using these quantities to obtain any nonlocal selection methods or criteria for esti-
mation. Indeed, for nonlinear complex systems, it is easy to argue that questions related
to some type of global parameter identifiability are not fruitful questions to be pursuing.

As we have stated above, to apply the parameter subset selection algorithm we require
prior knowledge of nominal variance and nominal parameter values. These nominal values
of 𝜎0 and 𝜃0 are needed to calculate the sensitivity matrix, the Fisher matrix and the
corresponding covariance matrix defined in (18). For our illustration here, we use the
variance and parameter estimates obtained in [1, 4] for Patient # 4 as nominal values. In
problems for which no prior estimation has been carried out, one must use knowledge of
the observation process error and some knowledge of viable parameter values that might
be reasonable with the model under investigation.

More precisely, here we assume the error variance is 𝜎2
0 = 1.100 × 10−1, and assume

the following nominal parameter values (for description and units see Table 1): 𝑥01 =
log10(1.202 × 103), 𝑥02 = log10(6.165 × 101), 𝑥03 = log10(1.755 × 101), 𝑥04 = log10(6.096 ×
10−1), 𝑥05 = log10(9.964 × 105), 𝑥06 = log10(1.883 × 10−1), 𝜆1 = 4.633, 𝑑1 = 4.533 ×
10−3, 𝜖1 = 6.017 × 10−1, 𝑘1 = 1.976 × 10−6, 𝜆2 = 1.001 × 10−1, 𝑑2 = 2.211 × 10−2, 𝑓 =
5.3915 × 10−1, 𝑘2 = 5.529 × 10−4, 𝛿 = 1.865 × 10−1,𝑚1 = 2.439 × 10−2, 𝑚2 = 1.3099 ×
10−2, 𝜖2 = 5.043× 10−1, 𝑁𝑇 = 1.904× 101, 𝑐 = 1.936× 101, 𝜌1 = 1.000, 𝜌2 = 1.000, 𝜆𝐸 =
9.909 × 10−3, 𝑏𝐸 = 9.785 × 10−2,𝐾𝑏 = 3.909 × 10−1, 𝑑𝐸 = 1.021 × 10−1, 𝐾𝑑 = 8.379 ×
10−1, and 𝛿𝐸 = 7.030 × 10−2.

In Figure 1 we depict the log-scaled longitudinal observations (data) on the number of
CD4+ T-cells, {𝑦𝑖}, and the model output evaluated at the estimate (the nominal parameter
values described above), 𝑧(𝑡𝑖; 𝜃𝑂𝐿𝑆), for Patient #4 in [1, 4].

Given the vector
𝜃 = (𝜃1, 𝜃2) ∈ ℝ

28,

for initial conditions plus system parameters, we will consider sub-vectors, by partitioning
into fixed and active (those to possibly be estimated) parameters. It is assumed the fol-
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Figure 1: Log-scaled data {𝑦𝑖} of Patient 4 CD4+ T-cells (represented as ‘x’), and model
output 𝑧(𝑡; 𝜃𝑂𝐿𝑆) (represented by the solid curve) evaluated at parameter estimates ob-
tained in [1, 4].

lowing entries are always fixed at known values provided in [1, 4]: 𝑥03, 𝑥
0
4, 𝑥

0
6, 𝜌1, and 𝜌2.

In other words, we will calculate sub-vectors from the ℝ
23 vector

𝑞 = (𝑥01, 𝑥
0
2, 𝑥

0
5, 𝜆1, 𝑑1, 𝜖1, 𝑘1, 𝜆2, 𝑑2, 𝑓, 𝑘2, 𝛿,𝑚1,𝑚2, 𝜖2, 𝑁𝑇 , 𝑐, 𝜆𝐸 , 𝑏𝐸 ,𝐾𝑏, 𝑑𝐸 ,𝐾𝑑, 𝛿𝐸). (22)

For every fixed value of 𝑝, such that 𝑝 = 2, 3, . . . , 22, there are two partitions of interest:
one with 𝑝 active parameters, and the other one with 23−𝑝 fixed parameters. For example,
when 𝑝 = 22 one of twenty three possible partitions is the following: fix 𝑥01 and consider

(𝑥02, 𝑥
0
5, 𝜆1, 𝑑1, 𝜖1, 𝑘1, 𝜆2, 𝑑2, 𝑓, 𝑘2, 𝛿,𝑚1,𝑚2, 𝜖2, 𝑁𝑇 , 𝑐, 𝜆𝐸 , 𝑏𝐸 ,𝐾𝑏, 𝑑𝐸 ,𝐾𝑑, 𝛿𝐸)

𝑇 ∈ ℝ
22,

as a vector with active parameters. In the implementation of this subset selection algorithm,
we carry out the calculation of all possible vectors by using binary matrices with twenty
eight columns, such that every row has zeros for entries that are fixed, and ones for those
that are active. In the example above, the binary row is (recall that 𝑥03, 𝑥

0
4, 𝑥

0
6, 𝜌1, and 𝜌2

are fixed throughout)

(0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1).

For a fixed value of 𝑝 the set

𝒮𝑝 = {𝜃 ∈ ℝ
𝑝∣ 𝜃 is a sub-vector of 𝑞 ∈ ℝ

23defined in equation (22)} (23)

collects all the possible active parameter vectors in ℝ
𝑝.

11



We define the set

Θ𝑝 = {𝜃∣ 𝜃 ∈ 𝒮𝑝 ⊂ ℝ
𝑝, rank(𝜒(𝜃)) = 𝑝}, (24)

where 𝜒(𝜃) denotes the 𝑛 × 𝑝 sensitivity matrix. By construction, the elements of Θ𝑝 are
parameter vectors that give sensitivity matrices with independent columns.

The next step in the selection procedure involves the calculation of standard errors
(uncertainty quantification) using the asymptotic theory (see (20)). For every 𝜃 ∈ Θ𝑝, we
define a vector of coefficients of variation 𝜈(𝜃) ∈ ℝ

𝑝 such that for each 𝑖 = 1, . . . , 𝑝,

𝜈𝑖(𝜃) =

√
(Σ(𝜃))𝑖𝑖
𝜃𝑖

,

and
Σ(𝜃) = 𝜎2

0

[
𝜒(𝜃)𝑇𝜒(𝜃)

]−1 ∈ ℝ
𝑝×𝑝.

The components of the vector 𝜈(𝜃) are the ratios of each standard error for a parameter
to the corresponding nominal parameter value. These ratios are dimensionless numbers
warrenting comparison even when parameters have considerably different scales and units
(e.g., 𝑁𝑇 is on the order of 101, while 𝑘1 is on the order of 10−6). We then define the
selection score as

𝛼(𝜃) = ∣𝜈(𝜃)∣ ,
where ∣ ⋅ ∣ is the norm in ℝ

𝑝. A selection score 𝛼(𝜃) near zero indicates lower uncertainty
possibilities in the estimation, while large values of 𝛼(𝜃) suggest that one could expect to
find substantial uncertainty in at least some of the components of the estimates in any
parameter estimation attempt.

We summarize the steps of the algorithm as follows:

1. All possible active vectors. For a fixed value of 𝑝 = 2, . . . , 22, fix 23−𝑝 parameters
to nominal values, and then calculate the set 𝒮𝑝, which collects all the possible active
parameter vectors in ℝ

𝑝:

𝒮𝑝 = {𝜃 ∈ ℝ
𝑝∣ 𝜃 is a sub-vector of 𝑞 ∈ ℝ

23defined in equation (22)}.

2. Full rank test. Calculate the set Θ𝑝 as follows

Θ𝑝 = {𝜃∣ 𝜃 ∈ 𝒮𝑝 ⊂ ℝ
𝑝, rank(𝜒(𝜃)) = 𝑝}.

3. Standard error test. For every 𝜃 ∈ Θ𝑝 calculate a vector of coefficients of variation
𝜈(𝜃) ∈ ℝ

𝑝 by

𝜈𝑖(𝜃) =

√
(Σ(𝜃))𝑖𝑖
𝜃𝑖

,

for 𝑖 = 1, . . . , 𝑝, and Σ(𝜃) = 𝜎2
0

[
𝜒(𝜃)𝑇𝜒(𝜃)

]−1 ∈ ℝ
𝑝×𝑝. Calculate the selection score

as 𝛼(𝜃) = ∣𝜈(𝜃)∣ .

12



4 Results and Discussion

Results of the subset selection algorithm with the HIV model of Section 1.1 are given in
Table 2. Parameter vectors, condition numbers (ratio of largest to smallest singular value
[40]), and values of the selection score are displayed for 𝑝 = 11. The third column of Table
2 displays selection score values from smallest (top) to largest (bottom). For the sake of
clarity we only display five out of one million parameter vectors chosen by the selection
algorithm. The selection score values range from 2.374 × 100 to 1.910 × 104 for the one
million parameter vectors selected when 𝑝 = 11.

Table 2: Parameter vectors obtained with subset selection algorithm for 𝑝 = 11. For each
parameter vector 𝜃 ∈ Θ𝑝 the sensitivity matrix condition number 𝜅(𝜒(𝜃)), and the selection
score 𝛼(𝜃) are displayed.

Parameter vector, 𝜃 Condition number, 𝜅(𝜒(𝜃)) Selection score, 𝛼(𝜃)

(𝑥01, 𝑥
0
5, 𝜆1, 𝑑1, 𝜖1, 𝜆2, 𝑑2, 𝑘2, 𝛿, 𝜖2, 𝑐) 1.895×105 2.374×100

(𝑥01, 𝑥
0
5, 𝜆1, 𝑑1, 𝜖1, 𝜆2, 𝑑2, 𝑘2, 𝛿, 𝜖2, 𝑁𝑇 ) 1.899×105 2.375×100

(𝑥01, 𝑥
0
5, 𝜆1, 𝑑1, 𝜖1, 𝑘1, 𝜆2, 𝑑2, 𝑘2, 𝛿, 𝜖2) 1.193×108 2.384×100

(𝑥01, 𝑥
0
2, 𝜆1, 𝑑1, 𝜖1, 𝜆2, 𝑑2, 𝑘2, 𝛿, 𝜖2, 𝑐) 1.480×105 2.405×100

(𝑥01, 𝑥
0
2, 𝜆1, 𝑑1, 𝜖1, 𝜆2, 𝑑2, 𝑘2, 𝛿, 𝜖2, 𝑁𝑇 ) 1.479×105 2.406×100

In [1, 4], the authors estimate the parameter vector

𝜃 = (𝑥01, 𝑥
0
2, 𝑥

0
5, 𝜆1, 𝑑1, 𝜖1, 𝑘1, 𝜖2, 𝑁𝑇 , 𝑐, 𝑏𝐸) ∈ ℝ

11.

The selection algorithm chooses most of these parameters. For instance, the sub-vector
(𝑥01, 𝜆1, 𝑑1, 𝜖1, 𝜖2) appears in every one of the top five parameter vectors displayed in Table
2. However, the sub-vector (𝑥01, 𝑥

0
2, 𝑥

0
5) along with 𝑏𝐸 are never chosen among the top five

parameter vectors. Even so, use of the subset selection algorithm discussed here (had it
been available) might have proved valuable in the efforts reported in [1, 4].

In Figure 2(a) we depict the selection score as a function of the number of parameters.
For each fixed value of 𝑝, one hundred values are displayed, corresponding to the parameter
vectors with the smallest one hundred selection score values. Figure 2(a) suggests that
parameter vectors with more than thirteen parameters (13 ≤ 𝑝 ≤ 18) might be expected to
have large uncertainty when estimated from observations, because the selection score ranges
from 1.110×101 to 5.353×102. Figure 2(b) is a semilog plot of Figure 2(a), i.e., it displays
the natural logarithm of the selection score as a function of the number of parameters.
Figure 2(b) also depicts the regression line, which fits the natural logarithm of the selection
score. From this linear regression we conclude the selection score 𝛼 grows exponentially

13
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Figure 2: (a) Selection score versus the number of parameters 𝑝. (b) Natural logarithm of
selection score (circles) and regression line versus number of parameters 𝑝. For each fixed
value of 𝑝, the smallest 100 values of the selection score are displayed.
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Figure 3: Selection score 𝛼(𝜃) versus condition number 𝜅(𝜒(𝜃)), where 𝜃 ∈ ℝ
𝑝, for 𝑝 = 5

(circles) and 𝑝 = 18 (triangles). Both axes are in logarithmic scale. The smallest hundred
values of the selection score are depicted for each value of 𝑝.

with the number of parameters to be estimated. More precisely, for 3 ≤ 𝑝 ≤ 18, we find

𝛼 ≡ 𝛼(𝑝) = 𝐶𝑒0.75𝑝, (25)

where 𝐶 = 8.52× 10−4.
In Figure 3 we graph (in logarithmic scales) the smallest one hundred selection score

values 𝛼(𝜃) versus the sensitivity matrix condition number 𝜅(𝜒(𝜃)), with 𝜃 ∈ ℝ
𝑝, for 𝑝 = 5

(circles) and 𝑝 = 18 (triangles). The condition number 𝜅(𝜒(𝜃)) is defined as the ratio of the
largest to smallest singular value [40] of the sensitivity matrix 𝜒(𝜃). It is clear from Figure
3 that the selection score drops dramatically from 𝑝 = 18 to 𝑝 = 5, which is suggestive of
a reduction in uncertainty quantification for these scenarios. However, the conditioning of
the sensitivity matrix does not exhibit this decaying feature. Some values of 𝜅(𝜒(𝜃)) are
within the same ball park, 107 ≤ 𝜅(𝜒(𝜃)) ≤ 108 for 𝑝 = 5 and 𝑝 = 18, while other 𝜅(𝜒(𝜃))
values for 𝑝 = 5 range considerably from 6.9× 101 to 4.3× 106 .
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Table 3: Coefficient of variation (CV), defined as the ratio of standard error divided by
estimate, for two parameter vectors.

Parameter CV for 𝑝 = 18 CV for 𝑝 = 5

𝑥01 8.99×100 2.84×10−3

𝑥02 3.04×102 —

𝑥05 1.20×102 —

𝜆1 5.17×10−2 7.32×10−3

𝑑1 5.84×10−2 —

𝜖1 9.29×10−3 3.64×10−4

𝜆2 3.66×100 —

𝑑2 4.30×100 —

𝑓 1.30×101 —

𝑘2 4.76×100 —

𝑚1 1.42×102 —

𝜖2 3.55×100 1.25×10−2

𝑁𝑇 8.05×100 —

𝑐 8.98×100 6.88×10−3

𝜆𝐸 9.97×101 —

𝑑𝐸 4.15×101 —

𝐾𝑑 1.61×102 —

𝛿𝐸 6.37×101 —

In Table 3 we examine the effect that removing parameters from an estimation has in un-
certainty quantification. The coefficient of variation (CV) is defined as the ratio of the stan-
dard error to the estimate for each parameter. In Table 3 two cases are considered: 𝑝 = 18,
where 𝜃 = (𝑥01, 𝑥

0
2, 𝑥

0
5, 𝜆1, 𝑑1, 𝜖1, 𝜆2, 𝑑2, 𝑓, 𝑘2,𝑚1, 𝜖2, 𝑁𝑇 , 𝑐, 𝜆𝐸 , 𝑑𝐸 ,𝐾𝑑, 𝛿𝐸), and 𝑝 = 5, where

𝜃 = (𝑥01, 𝜆1, 𝜖1, 𝜖2, 𝑐). There are substantial improvements in uncertainty quantification.
For instance, the reduction of CV for 𝜖2, going from 3.55× 100 to 1.25× 10−2, implies the
standard error is 355% of the estimate for 𝑝 = 18, while it reduces to 1.25% of the estimate
when 𝑝 = 5. For the parameter 𝑐, it is observed that the standard error reduces from being
898% to less than 1% of the estimate. A similar remarkable improvement is also seen for 𝑥01,
with a standard error equal to 899% of the estimate for 𝑝 = 18, dropping to less than 1% for
𝑝 = 5. The improvement in uncertainty quantification is related to going from the upper
right corner of Figure 3 into the lower left corner. On one hand, the condition number
and selection score for 𝜃 = (𝑥01, 𝑥

0
2, 𝑥

0
5, 𝜆1, 𝑑1, 𝜖1, 𝜆2, 𝑑2, 𝑓, 𝑘2,𝑚1, 𝜖2, 𝑁𝑇 , 𝑐, 𝜆𝐸 , 𝑑𝐸 ,𝐾𝑑, 𝛿𝐸),

are 1.664 × 108, and 411.022, respectively. On the other hand, the condition number and
selection score for 𝜃 = (𝑥01, 𝜆1, 𝜖1, 𝜖2, 𝑐) are 979.532, and 1.630 × 10−2, respectively.
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5 Concluding Remarks

As we have noted, inverse problems for complex system models containing a large number
of parameters are difficult. There is great need for quantitative methods to assist in posing
inverse problems that will be well formulated in the sense of the ability to provide parameter
estimates with quantifiable small uncertainty estimates. We have introduced and illustrated
use of such an algorithm that requires prior local information about ranges of admissible
parameter values and initial values of interest along with information on the error in the
observation process to be used with the inverse problem. These are needed in order to
implement the sensitivity/Fisher matrix based algorithm.

Because sensitivity of a model with respect to a parameter is fundamentally related to
the ability to estimate the parameter, and because sensitivity is a local concept, we observe
that the pursuit of a global algorithm to use in formulating parameter estimation or inverse
problems is most likely a quest that will go unfulfilled.
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