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Abstract

The population dynamics underlying the diffusion of ideas hold many qualitative similarities to those involved in the

spread of infections. In spite of much suggestive evidence this analogy is hardly ever quantified in useful ways. The

standard benefit of modeling epidemics is the ability to estimate quantitatively population average parameters, such as

interpersonal contact rates, incubation times, duration of infectious periods, etc. In most cases such quantities generalize

naturally to the spread of ideas and provide a simple means of quantifying sociological and behavioral patterns. Here we

apply several paradigmatic models of epidemics to empirical data on the advent and spread of Feynman diagrams through

the theoretical physics communities of the USA, Japan, and the USSR in the period immediately after World War II. This

test case has the advantage of having been studied historically in great detail, which allows validation of our results. We

estimate the effectiveness of adoption of the idea in the three communities and find values for parameters reflecting both

intentional social organization and long lifetimes for the idea. These features are probably general characteristics of the

spread of ideas, but not of common epidemics.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamical population models are used to predict average behavior, generate hypotheses or explore
mechanisms across many fields of science including ecology [1–3], epidemiology [4–7] and immunology [8], to
name but a few. Traditionally, epidemiological models focus on the dynamics of ‘‘traits’’ transmitted between
individuals, communities, or regions (within specific temporal or spatial scales). Traits may include (i) a
communicable disease such as measles [4] or HIV [9]; (ii) a cultural characteristic such as a religious belief, a
e front matter r 2005 Elsevier B.V. All rights reserved.
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fad [10–13], an innovation [14], or fanatic behavior [15]; (iii) an addiction such us drug use [16] or a disorder
[17]; or (iv) information spread through, e.g., rumors [18,19], e-mail messages [20], weblogs [21], or peer-to-
peer computer networks [22].

The earliest and by now the most thoroughly studied population models are those used to map disease
progression through a human population [23–25]. These models typically divide a population into classes that
reflect the epidemiological status of individuals (e.g. susceptible, exposed, infected, etc.), who in turn transit
between classes via mutual contact at given average rates. In this way the models can capture average disease
progression by tracking the mean number of people who are infected, who are prone to catch the disease, and
who have recovered over time. In addition, these models can be used to identify the role of specific population
characteristics such as age, variable infectivity, and variable infectious periods [24]. The division of
epidemiological classes according to such characteristics gives rise to more complex models with so-called
heterogeneous mixing.

In this paper we apply models similar to those used in epidemiology to the spread of ideas. By the term
‘‘idea’’ we refer generally to any concept that can be transmitted from person to person [26–29]. It may refer to
a technology, which may require effort and apprenticeship to be learned, but it may also be a more fickle piece
of information such as a colloquialism or a piece of news. What is important is that it is possible to tell if
someone has adopted the idea, understands and remembers it, and is capable of and/or active in spreading it
to others.

Pioneering contributions to the modeling of social contagion processes, based on epidemiological models,
date back to as early as 1953 [10,18,30–35]. Nearly a decade later, population models were applied to the
spread of scientific ideas [36,37]. Around the same time, a stochastic model for the spread of rumors was
proposed and analyzed [19]. In this model, a closed population is divided into three ‘‘social’’ states: ignorant,
spreaders, and stiflers. Transitions from the ignorant state to spreaders may result from contacts between the
two classes, whereas encounters between individuals who already know the rumor may lead to its cessation.
Various recent extensions of this model include a general class of Markov processes for generating time-
dependent evolution [38], and studies of the effects of social landscapes on the spread, either through Monte
Carlo simulations over small-world [39] and scale-free [40] networks, or by derivation of mean-field equations
for a population with heterogeneous ignorant and spreader classes [41]. Other interesting mathematical
models, that attempt to capture the capacity for a population or idea to persuade others, or imitate, have also
been developed to generate predictions regarding product adoption [42] or public opinion trends [43,44].
Despite this revival in the modeling of information spread, few of these models have been directly validated by
empirical data [36,37,42,44].

Beyond obvious qualitative parallels there are also important differences between the spread of ideas and
diseases. The spread of an idea, unlike a disease, is usually an intentional act on the part of the transmitter
and/or the adopter. Some ideas that take time to mature, such as those involving apprenticeship or study,
require active effort to acquire. There is also no simple automatic mechanism—such as an immune system—by
means of which an idea may be cleared from an infected individual. Most importantly, it is usually
advantageous to acquire new ideas, whereas this is manifestly not so for diseases. This leads people to adopt
different, often opposite, behaviors when interested in learning an idea compared to what they may do during
an epidemic outbreak. Thus we should expect important qualitative and quantitative differences between ideas
and diseases when using epidemiological models in a sociological context. We explore some of these points
below in greater detail, in the context of specific models and data.

In spite of these differences, quantifying how ideas spread is very desirable as a means of testing sociological
hypotheses. For example, we can apply dynamical population models to the spread of an idea to validate
statements about how effectively it is transmitted, the size of the susceptible population, the speed of its
spread, as well as its persistence. Estimating the population numbers and rates is useful in constraining
explanatory frameworks. It is also useful for studying how cultural environments may affect adoption, as
happens when the same idea is presented to communities in different nations, or conversely when different
ideas are presented to the same community.

In this paper, we apply several general models, inspired by epidemiology and informed by our knowledge of
the sociology of the spread dynamics, to the diffusion of a specific scientific idea in three different
communities. Our test case is the spread of Feynman diagrams, since the late 1940s the principal
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computational tool of theoretical high-energy physics, and later also used extensively in other areas of many-
body theory such as atomic physics and condensed-matter theory. The primary reason to choose this example
is that we have detailed historical information about the network of contacts, person by person, by means of
which the diagrams spread during the first 6 years after their introduction [45–47].

This example of the spread of an idea may not transcend automatically to other cases of idea diffusion.
Feynman diagrams are primarily a tool for complex calculation. As such their study and assimilation require a
period of apprenticeship and familiarization. Transmission of the technique almost invariably proceeded, in
the early years, through personal contact, from informal teacher to student and among peer groups of users.
In later years the idea became familiar and available in accessible forms so that (in principle) it could more
easily have been learned from books and lecture notes. Thus, although our example will clearly not cover every
class of ideas it will point, we believe, to features of epidemic models that apply to idea diffusion. It will also
reveal features of these models that require modification, thereby producing more realistic candidate models
that we expect will prove useful beyond our present analysis.

In Section 2 we give some historical background on the spread of Feynman diagrams in the United States,
Japan, and the Soviet Union. We discuss our data sources and the organization of the datasets. Section 3
presents several classes of models of epidemiology (or directly inspired by them), some of their mathematical
properties, and the circumstances under which we expect them to apply to the spread of ideas. We apply each
model to the historical data in Section 4, and discuss the estimated values for the model parameters in the light
of our independent knowledge of how the diagrams spread. Finally, in Section 5 we present our conclusions
and give some outlook on the general population modeling of the spread of ideas. Appendix A contains details
about our parameter estimation procedure.

2. Data sources, time series reconstruction, and state determination

Feynman diagrams occupy a central role in modern theoretical physics. Realistic models of high-energy
physics, as well as in condensed-matter, atomic, and nuclear physics cannot be solved exactly to generate
predictions that can be confronted with experiments. In special circumstances, however, such as when
interactions are weak, series expansions in a small parameter permit very good systematic approximations.

In models of particle physics, such as the relativistic quantum theory of electromagnetism—quantum
electrodynamics—most terms of this series beyond zeroth order (tree level) are formally infinite. The
procedure of removing unphysical infinities to generate predictions is called ‘‘renormalization.’’ It is vital for
renormalization to work that commensurate terms be grouped together. This is a relatively simple procedure
for the lowest orders in the expansion series but becomes absolutely confounding at higher orders, in which
many terms contribute and infinities must cancel precisely between them. For example, in quantum
electrodynamics, second-order calculations (involving the first non-trivial corrections within the perturbative
expansion) typically involve 10 or so distinct terms to be delimited, calculated, and added together, while
eighth-order calculations involve nearly 1000 such terms. Both challenges to making calculations in quantum
electrodynamics—the presence of infinities and the accounting difficulties of perturbative calculations—were
well known to physicists during the 1930s, and the problems remained unsolved after World War II.
Throughout 1947 and 1948 several approaches to rendering quantum electrodynamics well-defined were being
attempted in the USA and Japan, but it remained unclear if any renormalization program could succeed
systematically [48].

It was then that Freeman Dyson, following up on an idea by Richard Feynman, was able to show how a
diagrammatic representation of particle interactions could be used to organize the series expansion. Using the
diagrams, Dyson further demonstrated that the infinities could be systematically identified and cancelled to
any perturbative order. This conceptual breakthrough unified Feynman’s approach (then at Cornell
University) with that of Julian Schwinger (at Harvard University) and Sin-Itiro Tomonaga (at Tokyo
Education University). For their contributions Feynman, Schwinger, and Tomonaga were awarded the Nobel
Prize in 1965 [48]. Feynman diagrams opened the floodgates for computation (and prediction) in quantum
electrodynamics and beyond, creating enormous research opportunities for a new generation of theoretical
physicists. Tests of quantum electrodynamics and later quantum field theories of the weak and strong nuclear
interactions continue today in multibillion-dollar particle accelerators at CERN and Fermilab, as well as at
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smaller installations. These quantum field theories taken together constitute the ‘‘standard model of particle
physics,’’ which summarizes our most fundamental (and most exact) understanding of matter and radiation to
date. Almost all quantitative predictions of the standard model, on which modern particle physics and
cosmology are based, are computed using series of Feynman diagrams.

Because of their extraordinary importance in enabling a good part of modern theoretical physics, the advent
of quantum electrodynamics and of Feynman diagrams in particular has been very well documented. Our data
was collected in large part for a new book by one of the authors [45]. For the United States and Britain one of
us (Kaiser) reconstructed the network of contacts—author by author—for the spread of the diagrams during
the first 6 years after their introduction, between 1949 and 1954. For this he relied upon unpublished
correspondence, preprints, lecture notes, and publications from the period, along with more recent interviews
and published recollections. With the aid of two colleagues, he used similar materials to study how the
diagrams spread to young physicists in Japan and the Soviet Union. Although less information is readily
available about these communities of physicists, a reasonably complete picture of contacts and spread can also
be inferred [45,46].

Data for the number of authors adopting Feynman diagrams were collected for the first 6 years in the USA
and Japan, from the beginning of 1949 to the end of 1954. For the Soviet Union, where the diagrams were
introduced later and where the spread was initially slower, we assembled data for the first 8 years, from the
beginning of 1952 to the end of 1959. We identified adopters of the idea (or members of the ‘‘infected’’ class)
based on published uses of (or discussion of) Feynman diagrams in the main physics research journals of each
country: Physical Review in the USA, Progress in Theoretical Physics in Japan, and Zhurnal Eksperimental’noi

i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics) in the USSR. The data were identified
by manual page-by-page counts. We found this to be necessary because no citation search or even keyword
search would suffice. Often in the early years authors would cite the Feynman and/or Dyson papers without
making any use of the actual diagrammatic techniques, and, conversely, by the early 1950s many would use
the diagrams without necessarily citing the Feynman or Dyson papers. Given the quasi-exponential nature of
the adoption process these identification methods become impractical for longer times. This is the principal
reason why we have not extended the study to later years. Additionally, we have detailed historic accounts of
the spreading process spanning these initial periods only [45,46]. Such knowledge will allow us to build models
below that reflect fundamental social dynamics, different qualitatively from those underlying standard models
of epidemics.

The identification of adopters with published authors can clearly lead to underestimation. Nevertheless the
procedure is dictated by practical considerations and has become the standard. For example Tabah, reviewing
an extensive literature on historical scientific trends grappling with this issue, suggests that the most practical
measuring unit of a (scientific) idea is the published article [37]. And Goffman, using mean-field
epidemiological models [36,49–51], chose the publication as the transmission ‘‘unit’’, when he validated
models for the diffusion of scientific ideas with aggregate longitudinal data about mast cell research [36], and
the growth of symbolic logic [51].

Similarly the identification of national communities with specific journal publication is imperfect, although
we find almost no cross-national publications, apart from a few British authors who were in active contact
with developments in the USA and published in the Physical Review. As such they are counted as part of the
diagram-using community in the USA. With these choices the evolution of cumulative numbers of Feynman-
diagram authors is shown in Fig. 1.

We see that none of the data sets shows saturation in the growth of the adoption of Feynman diagrams.
There are good reasons for this, spanning the initial period covered by the data, shown in Fig. 1, and beyond.
The physics graduate student enrollment grew rapidly in the US after World War II, faster than any other
field, and was growing especially quickly during the late 1940s when Feynman diagrams were introduced [52].
This growth persisted until the late 1960s, with an average doubling time of 6.24 years. Among all subfields of
physics, particle and nuclear physics, where the diagrams first spread, grew the fastest. The numbers of new
physics graduate students in the USSR also increased exponentially, at a rate comparable to that in the US
during the postwar period, but quantitative estimates are more uncertain. In Japan, we know that membership
in the new Elementary Particle Theory Group (which consisted largely of interested grad students and
postdocs) grew rapidly during this period [45]. Moreover during the mid and late 1950s, the range of
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Fig. 1. The time evolution of the cumulative number of authors using Feynman diagrams in the USA, Japan, and the USSR. The method

was first discovered in the USA and quickly spread both there and in Japan. Adoption was particularly fast in Japan where researchers had

already developed similar methods. At the same time, new institutions were developed throughout Japan after World War II that helped

the nation’s physicists share information from the international scientific community that might otherwise have been difficult to access.

Adoption in the USSR occurred later because of scientific isolation from physicists in the West with the onset of the Cold War, and

proceeded more slowly because of institutional resistance. For details of these institutional and pedagogical factors, see Refs. [45,46].
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applications to which physicists applied Feynman diagrams widened considerably. No longer the province for
nuclear and high-energy physicists alone, many people began to apply the diagrams for problems in solid-state
physics and beyond. This led to another surge in growth of diagram adopters, as new cohorts encountered the
diagrams across a growing number of subfields of physics. Compounding this growth, a new generation of
textbooks appeared that featured the diagrammatic techniques prominently, ensuring even wider adoption
within graduate students’ curricula.

Analogies to other population states commonly used in epidemiological models are natural but must be
properly qualified. The identification of susceptibles is usually problematic both for diseases and ideas. For
simplicity, one may consider the entire population that is not infected (or recovered), but if the spreading
process requires such features as direct contact with those already infected this may turn out to be a gross
overestimate. With the benefit of hindsight we can see what fraction of the population actually became
infected, but such estimates can clearly underestimate the class of susceptibles.

Finally, it is interesting to discuss the recovered state. For some communicable diseases such a state does
not exist; as it happens in HIV and tuberculosis, for which infected individuals remain latent for extensively
long periods. On the other hand, there are infectious diseases in which an individual acquires immunity
right after recovery and will not get re-infected. This is not true with ideas, a case in which culture is
manifestly different from biology. An idea can recur again and again, whenever it becomes useful, once
it becomes part of an individual’s repertoire. In many cases (and this is clear in our data for several authors),
an individual might publish in areas where Feynman diagrams are used, only to later leave the area for
good or to return to it later. For very prolific authors, publication in several areas simultaneously occurs
frequently.
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With these caveats in mind we proceed in the next sections to apply epidemic models to our data. Model
parameters will be estimated on the basis of how well they fit the evolution of adopters. Furthermore, the
results of these estimates will be subjected to broad bounds imposed by the solutions’ plausibility, given our
knowledge of the historical facts.
3. Population models: drawing parallels between epidemics and idea diffusion

Below we shall concentrate on the classical, simplest epidemiological models, based on ‘‘homogeneous
mixing’’ in which state variables are only functions of time. In a review of epidemiological models, Hethcote
[24] introduced their compartmental characterization (e.g. SIR, SIS, SEIR, etc.) within a global analysis of the
field. Such survey also discusses how more complex models can be used to assess the impact of population
structure (age, risk, gender, etc.), epidemiological variability (age of infection, variable infectivity, distributed
incubation periods, etc.), and scale (spatial, temporal, etc.) on disease dynamics and control. Although we
have knowledge of some population characteristics (e.g. academic level, institutional location) in our data set
we feel it may not be large enough to make such distinctions in a way that will lead to useful quantitative
discrimination.

As such we explore below a large class of ‘‘mean-field’’ models, illustrated by Fig. 2. At the onset of the
spread of the idea most of the population will be in the susceptible class (S), with a few individuals in the
incubator class (E)—having been in contact with the idea—and a small number of adopters (I) manifesting it.
These are the principal classes in the models below. In addition, inspired by the approaches of Daley and
Kendall [19], we also explore models in which there may be competing and mutually exclusive ideas (e.g. where
susceptibles are turned off from the idea and become skeptics or idea stiflers, represented by the class Z).
Furthermore, individuals may recover or become immune (R), and not manifest the idea again. Different
models combine subsets of these states and admit different couplings between them.

The total population is denoted by NðtÞ, where N ¼ S þ E þ I þ Z þ R (see Table 1). In the epidemic
models used in this study, the demographic dynamics are modeled by dN=dt ¼ BðNÞ � mN, where BðNÞ is
referred to as the recruitment function. In our case, this denotes the arrival rate of new individuals susceptible
to the idea, such as new graduate students starting in the field as well as other scientists who find the idea
relevant for their research. The parameter m40 denotes the rate at which physicists stop using Feynman
diagrams (the exit terms in Fig. 2). Thus, the maximum value that 1=m can take is the average lifespan of the
idea within a generation of researchers in the relevant community.

Whenever BðNÞ40 and m40, then the system in Fig. 2 is said to have vital dynamics. If BðNÞ � L40, then
NðtÞ varies over time and approaches a stable fixed point, L=m, as t!1, in other words, the community
recruitment

S      I R

Z

exit exit exit

exit

exit

E

Fig. 2. The basic scheme of population dynamics models for the spread of ideas, inspired by similar models in epidemics. An individual

can be recruited into the susceptible (S) class, then be exposed (E) to the idea, incubate it, and eventually manifest it, becoming a member

of the adopter or infected class (I). An individual might instead move into a competing infective class (e.g., skeptics, Z). It is possible that

part of the population may eventually recover (R), meaning that it will not manifest the idea again. Individuals can also exit any class, thus

reducing the total population.
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Table 1

Nomenclature for the state variables of the several population models used to describe the spread of ideas

Variable Definition

S Susceptible

E Idea incubators

I Idea adopters

Z Skeptics

R Recovered

N Total population: N ¼ S þ E þ I þZ þ R
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approaches its ‘‘carrying’’ capacity. In order to illustrate generic model features we discuss below a few partial
implementations of this general scheme, including explicit parameterizations. At the end of this section we
emphasize the role of the basic reproductive number, R0, as a measure of effectiveness of adoption.
3.1. Models without incubation: SIR model

The classical epidemic model consists of three states: susceptibles (S), adopters (or infected, I), and
recovered (R). In this SIR model, susceptible individuals transit directly to the adopter class through contact
with other adopters, without any delay period or incubation. The recovered state consists of those individuals
who no longer manifest the idea. This state allows for the decay of adopters by recovery and thus leads to a
regulation of the idea spread. The model is defined by the following system of ordinary differential equations
(where overdots denote derivatives with respect to time):

_S ¼ L� bS
I

N
� mS;

_I ¼ bS
I

N
� ðgþ mÞI ;

_R ¼ gI � mR;
_N ¼ L� mN;

8>>>>>>><
>>>>>>>:

(1)

where 1=ðgþ mÞ is the average time spent manifesting the idea as an adopter (g denotes the recovery rate from
infection). The term bSI=N is usually referred to as the standard incidence. The parameter b is the per capita
idea adoption rate. It can in turn be thought of as the product between the mean contact rate per capita and
the probability of adoption per contact.

As noted above, although recovery is a natural concept in epidemiology (since organisms naturally
may become immune after exposure and/or infection), there is no strict parallel when discussing ideas.
Loose analogies are possible, e.g. once one loses interest in an idea it is usually harder to have an individual
express it, whereas novelty may make it more attractive. Nevertheless there is no systematic cognitive
process, analogous to the immune system, that actively clears out ideas. As such many ideas are remembered
for life.

Many ideas may be short-lived, say from years to days, compared to the lifetime of the individual. In this
case, we may consider a single outbreak by setting L ¼ m ¼ 0. The sign of the right hand side of the second
equation in system (1) then determines the spread of the idea and depends on the initial fraction of
susceptibles, Sðt0Þ=N. If the initial state of the population can be such that Sðt0Þ=Nog=b, then the number of
infectives can only decrease. This is the basis of immunization campaigns, whereby members of the susceptible
class are turned into members of the immune class, and hence become part of Rðt0Þ. Thus knowledge of the
infection rate, b, and of the lifetime of the infection, 1=g, results in the recommendation for the fraction of
immune (recovered) necessary for an epidemic not to develop, namely Rðt0Þ=N41� ðg=bÞ. For a very
infectious disease or idea (large b) or one with a slow recovery rate (small g) almost all of the population must
be immune in order to halt the spread.
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Due to the less clear definition of immunity to an idea, the concept of what may constitute immunization is
also ill-defined. Clearly, the novelty of an idea and a perception of its potential are often its most attractive
features. Changing this perception through education (e.g., about the consequences of a certain behavior,
ideology, or practice) may lead to an increase of skepticism and consequently greater ‘‘immunity’’ upon
exposure. Moreover, we should keep in mind that this concept of immunization, just as in standard epidemics
but for different reasons, is usually only valid for the lifetime of an individual. Although some biological
immunity can be passed e.g. from mother to infant, it is usually the case that young individuals are more
susceptible to new diseases and ideas alike. In the Feynman diagram case this is borne out historically: over
80% of the early adopters of the diagrams in each country were either graduate students or postdocs when
they first began using the diagrams; older physicists simply did not re-tool [45].

The asymptotic late-time dynamics of model (1) are well known, and will form the basis for the analyses of
more complex models discussed below. Suppose that L40 and m40. For long times, and regardless of the
distribution of infectives and susceptibles, recruitment and exits will balance each other so that
limt!1NðtÞ ¼ N� ¼ L=m. There are up to two different non-negative steady states (fixed points), known in
epidemiology as the disease-free equilibrium with S� ¼ N� ¼ L=m, I� ¼ R� ¼ 0, and the endemic state

(whenever b=ðgþ mÞ41) with

S� ¼
gþ m
b

N�; I� ¼
m

gþ m
�

m
b

� �
N�; R� ¼

g
m

I� ¼
g

gþ m
�

g
b

� �
N�. (2)

The eigenvalues around the disease-free state equilibrium are ð�m;�m;b� ðgþ mÞÞ. Thus it is stable provided
that bogþ m, i.e., if the decay rate (due to exit and recovery) is larger than the idea adoption rate. The
instability of the disease-free state corresponds to stability of the endemic state. The eigenvalues of the
linearized system around the endemic equilibrium are

�m; �
bm� A

2ðgþ mÞ
, (3)

where A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðb2m� 4bðgþ mÞ2 þ 4ðgþ mÞ3Þ

q
. All eigenvalues are negative provided that b4gþ m, guarantee-

ing the local stability of the endemic state.
As a result a transcritical bifurcation (where the two equilibria exchange stability) takes place at

R0 � b=ðgþ mÞ ¼ 1. In the mathematical epidemiology literature the dimensionless quantity R0 is known as
the basic reproductive number. R0 has an intuitive and useful interpretation as the average number of
secondary cases produced by a ‘‘typical’’ infected individual during his/her entire life as infectious, when
introduced in a population of susceptibles (assumed to be at a demographic steady state). We will discuss the
role of R0 further in Section 3.3.
3.2. Competition and incubation: SIZ and SEIZ models

In the spread of ideas, but almost never in standard epidemics, the exposure of individuals to an idea almost
invariably leads to both enthusiasts and skeptics. In the case of Feynman diagrams, skeptics did indeed
emerge. Julian Schwinger, for example, who developed a non-diagrammatic method of renormalization,
quipped years later that Feynman diagrams had ‘‘brought computation to the masses’’—hardly a good
thing, as far as Schwinger was concerned. Although his graduate students at Harvard did learn something
about the diagrams, they made little use of them in their dissertations and early articles. Oppenheimer, too,
was initially skeptical, and effectively blocked Dyson’s recruitment efforts at the Institute for Advanced Study
in Princeton for several weeks, before Hans Bethe interceded directly on Dyson’s behalf. In Moscow,
meanwhile, the influential Lev Landau made his distaste for Feynman diagrams clear during the early 1950s,
blocking any discussion of them in his famous seminar (even chastising one young graduate student who
had expressed interest in the diagrams that it would be ‘‘immoral’’ to chase such ‘‘fashions’’ as Feynman
diagrams!) [45]. Thus inclusion of skeptics alongside enthusiasts is quite important. This can be modeled by
considering two competing and mutually exclusive infected states, say I and Z. The simplest such model (SIZ)
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is given by

_S ¼ L� bS
I

N
� bS

Z

N
� mS;

_I ¼ bS
I

N
� mI ;

_Z ¼ bS
Z

N
� mZ;

8>>>>>><
>>>>>>:

(4)

where b and b denote the per capita rates of idea rejection and adoption by susceptibles, respectively.
The interesting new feature about this type of model is that it can support up to three fixed points (see

Table 2). The first is the usual disease-free state S ¼ N� ¼ L=m; I ¼ 0; Z ¼ 0 (extinction of both adopters and
skeptics), and two endemic states, one for each strand I, Z:

S ¼
m
b

N�; I ¼ 1�
m
b

� �
N�; Z ¼ 0 ðextinction of skepticsÞ, (5)

or

S ¼
m
b

N�; Z ¼ 1�
m
b

� �
N�; I ¼ 0 ðextinction of adoptersÞ. (6)

Observe that model (4) does not support the steady state co-existence of adopters and skeptics. For the
disease-free state the eigenvalues are ðb� m;b� m;�mÞ. Thus for stability one needs both bom and bom. This
means that there are two R0’s, RI

0 ¼ b=m, and RZ
0 ¼ b=m.

Under these circumstances, which of the endemic states becomes stable? To investigate this question we
inspect the eigenvalues around the I endemic state. This gives

�m;
b

b
� 1

� �
m; �bþ m. (7)

Similarly, we obtain the eigenvalues for the endemic Z state by replacing b with b and vice versa in (7). This
result implies that only one of the two endemic states can be stable, depending on the relative magnitude of the
contact rates b and b. We note, however, that because there is no contact term between the I and Z, the way
one class ends up dominating relies on long-time changes in the population through cycles of recruitment and
exit. This time scale can be very long, diverging in the limit where b! b. For b4b it will take on average
b=ðb� bÞ generations until the disappearance of skeptics.

The model generalizes immediately to an arbitrary number, nZ, of alternative endemic states, Zi (in which
we include the usual I), with associated contact rates bi. There will then be nZ þ 1 fixed points, one disease-free
and nZ endemic corresponding to each strand. As in the SIZ model above only the state with the largest bi will
be locally stable. The stability of the fixed point associated with Zi for decay in favor of an alternative state Zj
Table 2

Parameter definitions used in the several population models of Section 3

Parameter Definition

L Recruitment rate

1=m Average lifetime of the idea

1=� Average idea incubation time

1=g Average recovery time

b Per-capita S-I contact rate

r Per-capita E-I contact rate

b Per-capita S-Z contact rate

l S! Z transition probability given contact with skeptics

1� l S! E transition probability given contact with skeptics

p S! I transition probability given contact with adopters

1� p S! E transition probability given contact with adopters
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is characterized by an eigenvalue ½ðbi=bjÞ � 1�m. The disease-free equilibrium will be locally stable if and only if
all Ri

0 ¼ bi=bjo1; 8nZ

i¼1.
As above, consider the case in which recovery can take place in the SIZ model, and proceeds with rate gI

from the I class, and with rate gZ from the Z class. RI ;Z
0 change by the simple modification m! mþ gI ;Z. In the

absence of vital dynamics, it then becomes a necessary and sufficient condition for the growth of the
strand I, Z that Sðt0Þ=N4gI ;Z=b, respectively. What is interesting now is that the reduction of the
susceptibles can be achieved by having a suitably large fraction of the population in the complementary
infective strand(s). For example, I will not grow if ½Zðt0Þ þ Rðt0Þ�=N41� ðgI=bÞ. This observation quantifies
the fact that in a population with a large fraction of skeptics an idea will not take hold. In this sense,
complementary strands effectively act like recovery states. This may be the most natural explanation for why
old ideas seldom re-surface, in spite of being preserved for very long times in the population and various
archives.

One important drawback of SIR and SIZ models is that once exposed to an infected person, a susceptible
individual transits immediately to the infected class. This feature is often unrealistic, especially for ideas that
require long periods of apprenticeship, which is common in scientific research and is a significant feature of the
Feynman-diagram user data discussed below. The simplest way of incorporating some delay in an SIZ model
is to introduce a new class of incubators (or exposed), denoted by E, between the susceptible and adopter
states. Upon contact with an adopter, a susceptible individual transits with a given probability to the E class.
This class has a given characteristic lifetime, 1=�, before the individual manifests the idea and transits to the I

class. That is, 1=� is the average incubation (or maturation) time of the idea [53]. It is expected to be a function
of personal effort on the part of the adopter as well as environment (adverse or supportive). There may also be
population losses due to vital dynamics, which we will continue to assume occur on a timescale 1=m. In this
sense not all of the exposed population will become infected.

This extension leads to an SEIZ model. In addition, this model can be enriched with extra processes to
generate a better description of the data. Below we present a version of the SEIZ model in which skeptics
recruit from the susceptible pool with rate b, but their action may result either in turning the individual into
another skeptic (with probability l), or it may have the unintended effect of sending that person into the
incubator class (with probability 1� l). We also introduce a probability, p, that a susceptible individual will
become immediately infected with the idea upon contact. Conversely, with probability 1� p that person will
transit to the incubator class instead, from which the individual may later become an adopter. Furthermore,
the transition of individuals from the incubator class to the adopter class can be promoted by contact, with
rate r. With these choices the model is given by

_S ¼ L� bS
I

N
� bS

Z

N
� mS;

_E ¼ ð1� pÞbS
I

N
þ ð1� lÞbS

Z

N
� rE

I

N
� �E � mE;

_I ¼ pbS
I

N
þ rE

I

N
þ �E � mI ;

_Z ¼ lbS
Z

N
� mZ:

8>>>>>>>>>><
>>>>>>>>>>:

(8)

As expected, the system has a disease-free state with S� ¼ N; E� ¼ I� ¼ Z� ¼ 0. Analysis of the local stability
of this fixed point (utilizing next generation operator [54,55]) reveals that the basic reproductive numbers are
given by

RI ;Z
0 ¼

bð�þ pmÞ
mð�þ mÞ

;
lb

m

� �
. (9)

As in the SIZ model the first number, RI
0, is the one of interest, as it corresponds to an eigenvector with a

component of adopters. The second value, RZ
0 , corresponds to the exclusive growth of a population of

skeptics, without acceptance of the idea.
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Table 3

Basic reproductive number RI
0 for the SIR, SEI, and SEIZ models discussed in Section 3

Model SIR SEI SEIZ

RI
0

b
gþ m

b�
mðmþ �Þ

bð�þ pmÞ
mð�þ mÞ
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3.3. Speed of idea propagation and effectiveness of adoption

From the discussion of the models above we can define several important intuitive quantities that
characterize the spread of ideas. For example, a simple measure of the speed of propagation of the idea is the
number of new adopters per unit time. This is simply given by _I .

For simple models, such as the ones discussed above, in which there is only one growing eigenvalue lþ for
each infective strand, the initial velocity of the spread is simply

vini � _Iðt0Þ ’ lþIðt0Þ. (10)

The quantity vini gives a measure of how fast the idea will initially spread but not of its overall adoption
effectiveness. In order to determine the latter we must consider the number of new adoptions that a spreader
of the idea can lead to during his/her lifetime. Since there is no a priori good reason to suspect that ideas are
short-lived, the effectiveness of an idea may result from slow spread over long periods of time and thus may
not be well characterized by vini.

The number of secondary adoptions induced by a typical idea spreader in a population of susceptibles over
that person’s lifetime as an adopter, tidea, is called the basic reproductive number, R0, in ecology and
epidemiology (see Refs. [3,5,24]). As such R0 is the invasion criterion for adopters in a population of
susceptibles, or analogously the average branching ratio (the number of offspring) of the typical adopter over
his/her lifetime in this state. If R041 then the idea will spread. The greater R0, the more effective the idea
adoption will be.

In practice R0 can be computed in simple models through the linearization of _IðtÞ around the disease-free
equilibrium. These expressions are summarized in Table 3. For the computation of R0 in models with
heterogeneous populations other methods are necessary [5,54,55]. In Section 4 we will estimate the statistical
distributions for R0 (see Fig. 4) subject to fitting the data for the spread of Feynman diagrams in the USA,
Japan, and the USSR. The mean of this distribution provides a measure of the effectiveness of the adoption of
Feynman diagrams in the three countries.
4. Results and discussion

We now analyze the results of estimating parameters by matching the data on the spread of Feynman
diagrams for three distinct countries to several population models discussed above. These models allow us to
discuss the effects of the recovered class, of latency, and of competitive idea strands. They also explore several
classes of transition mechanisms, both by progression and by contact between population classes.

Table 4 summarizes the results. To gauge the applicability of each model to each data set we used the
simplest measure of goodness of fit, by computing the absolute value of the deviation between model
prediction and data. Average deviations per data point are shown in Table 4. Details of our ensemble
estimation procedure are given in Appendix A.

Here we note simply that parameter estimation must, by practical necessity, be confined to given numerical
ranges, with upper and lower bounds dictated by general empirical considerations. Our choices of estimation
intervals are shown in Table 5. This procedure is familiar from epidemiology, where knowledge about such
quantities as the length of incubation and infectious periods is often used to restrict various model parameters
to plausible values (Refs. [8,56] also employ assumptions of this nature in immunology).
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Table 5

Parameters used in the SIR, SEI and SEIZ population models, their allowed ranges in our estimation procedure and units

Parameter Baseline range Unit

Sðt0Þ ½0; 500� people

Eðt0Þ ½0; 100� people

Iðt0Þ ½0; 20� people

Rðt0Þ ½0; 10� people

Zðt0Þ ½0; 100� people

� ½0:2; 6� 1/year

b ½0; 12� 1/year

b ½0; 12� 1/year

l ½0; 1� 1

g ½0; 12� 1/year

L ½0; 50� people/year

m ½0:025; 12� 1/year

p ½0; 1� 1

r ½0; 12� 1/year

Table 4

The smallest (absolute value) average deviation per data point between the best fit parameters of each model and data on the number of

Feynman diagram adopters for the USA, Japan, and the USSR

Model USA Japan USSR

SIR 2.816 1.788 1.487

SEI 1.963 1.638 1.437

SEIZ 1.467 1.568 1.437
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4.1. Results for models without incubation: SIR

We start by presenting our results for simple models without incubation. Parameter estimates are given in
Table 6 for the USA, Japan, and the USSR, while the model solutions are compared to the data in Fig. 3.

The estimates for the initial population paint a picture of a considerably larger scientific community
susceptible to learn Feynman diagrams in the USA than in the other two countries. In Japan, Sðt0Þ appears
more than three times smaller than in the USA, while in the Soviet Union our estimates indicate a very small
number of susceptibles around 1952. Nevertheless both the USA and the USSR show strong levels of
recruitment (slightly higher L in the USA), as compared to Japan.

This makes sense given each community’s rates of growth during this time period. In the postwar United
States, the rate at which new Ph.D.s in physics were granted grew by nearly twice that of any other field
between 1945 and 1951, quickly exceeding (by a factor of three) the prewar rate at which new physicists had
been trained. Meanwhile, building on the wartime Manhattan Project pattern, the federal government pumped
money into physics at more than ten times the prewar levels. Most singled out for support during the early
postwar period was high-energy physics, precisely that branch of the discipline in which Feynman diagrams
were first developed and from which the earliest adopters came [52]. These factors led to a large population of
susceptibles when Feynman and Dyson first introduced Feynman diagrams.

Japan, on the other hand, had a strong tradition of high-energy physics before the war, but massive
shortages of funding and basic supplies during the early postwar years hampered the growth of that country’s
physics community (lower L). Although absolute numbers of new physicists in Japan did not grow at anything
like the pace in the United States after World War II, several institutional changes were introduced in Japan
right around the time that Feynman diagrams were invented, greatly facilitating the diagrams’ spread
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Table 6

Parameter estimation (SIR model) for the spread of Feynman diagrams in the USA, Japan, and the USSR. The three columns show our

best-fit estimate, the mean computed over an ensemble of parameter set realizations, and corresponding standard deviation (Std)

Parameter Best-fit Mean Std

USA

Sðt0Þ 114.092 96.463 76.726

Iðt0Þ 11.948 10.982 0.542

Rðt0Þ 0.830 0.550 0.432

b 0.534 0.663 0.052

g 8:542� 10�3 0.049 0.034

L 40.417 42.864 5.130

m 0.036 0.058 0.023

R0 12.029 6.752 2.008

Japan

Sðt0Þ 33.901 24.534 3.537

Iðt0Þ 4.018 3.799 0.348

Rðt0Þ 1.925 0.864 0.714

b 1.990 2.255 0.131

g 8:668� 10�3 0.054 0.034

L 12.466 20.759 2.646

m 0.031 0.087 0.037

R0 49.582 16.922 4.308

USSR

Sðt0Þ 1.347 1.156 1.088

Iðt0Þ 1.935 1.583 0.218

Rðt0Þ 9.742 4.928 2.415

b 1.251 1.258 0.045

g 0.030 0.092 0.062

L 32.822 32.031 6.894

m 0.188 0.134 0.063

R0 5.739 6.053 1.963
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throughout Japan. This fact is reflected in the highest adoption rate, b, for Japan, compared to the other two
countries. This in turn leads both to the fastest speed of adoption and the highest value of R0.

Contacts between Japanese and American physicists began again in 1948 (while Japan was still under US
occupation), including visits by several Japanese theoretical physicists to the Institute for Advanced Study in
Princeton, New Jersey, where Freeman Dyson was honing the new diagrammatic techniques. A new
organization in Japan, known as the Elementary Particle Theory Group, was also founded in 1948, and began
to publish its own informal newsletter and preprint organ, Soryushi-ron Kenkyu, which helped to spread news
of the new diagrammatic techniques. And finally, the Japanese university system quickly expanded tenfold,
beginning in 1949, allowing young physicists to establish new groups and visit new institutions throughout the
country, putting the new techniques into rapid circulation [45,46].

The Soviet Union was the only country in the world after World War II in which the growth in the numbers
of new physicists and in government spending on physics was comparable with the United States. This may
explain why our estimates of the recruitment rates L are so high and commensurate for the two nations. But
the onset of the Cold War in the late 1940s effectively ended all informal communication between physicists in
the USA and USSR just months before Feynman and Dyson introduced Feynman diagrams.

These geopolitical constraints severely limited the exchange of information for several years and explain
why Feynman diagrams took hold in the Soviet Union only later and at a slower initial pace (smallest vini).
Only with the ‘‘Atoms for Peace’’ initiatives, starting in 1955, did physicists from both countries begin to meet
informally for extended visits. And only after these lengthy face-to-face ‘‘exposures’’ did Soviet physicists
begin to adopt Feynman diagrams at a comparable rate to those in the USA and Japan [45,46]. Over time the
effectiveness of adoption, R0, was nevertheless comparable between the USSR and the USA.
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Finally we notice that both the exit and recovery rates, m and g, are small in every case, their sum being
comparable to a career lifetime (5–25 years). The fact that g is estimated to be smaller that m is a consequence
of our imposed lower bound on the exit rate and the fact that the data only constrains their sum. Although this
estimate cannot be made with good confidence for data which only covers the first 6 years, it is an indication
that ideas are not naturally forgotten.

Incidentally, we do know in some cases that the time to change research subject was much shorter for a few
prominent authors. Richard Feynman was working almost exclusively on his theory of superfluidity by 1953
(although some of his students continued to use the diagrams under his supervision), while Freeman Dyson
was persuaded to change research direction, to condensed-matter theory, at a meeting with Enrico Fermi also
in 1953. (See Dyson’s testimony in Ref. [57]; see also, Ref. [45].)

The long exit and recovery times, combined with finite, plausible values of the contact rate b, lead in turn to
large values of R0. The fact that an infected individual, when introduced in a population of susceptibles, can
lead to many adopters (here 6–50) is associated not with high adoption rate for the idea, b, but rather with a
long time (many years) over which the idea can be transmitted, 1=ðgþ mÞ. This is a feature that we will see
repeated in more complex models and that is manifestly different between biological infection and the spread
of ideas.

4.2. Results for models with incubation: SEI

We now analyze the effects of including latency in the models. In the simplest SEI model, susceptibles
transit to an intermediate class of incubators (E) upon contact with adopters, in which they remain for a
characteristic ‘‘incubation’’ time 1=�, after which they manifest the idea. Note that due to exit processes the
average time spent in the incubator class is actually 1=ð�þ mÞ, and that some individuals exit the population
and never manifest the idea. In practice m will be estimated to be small and the time spent in the incubators
class is indeed essentially the incubation time. The simplest SEI model is a subset of the SEIZ model of Eq. (8),
and is given by

_S ¼ L� bS
I

N
� mS;

_E ¼ bS
I

N
� �E � mE;

_I ¼ �E � mI :

8>>>><
>>>>:

(11)

Results of the parameter estimates are presented in Table 7.
The most important qualitative difference, relative to models without latency, is that the model can now

better fit data at early times for the USA and Japan (see Fig. 5). This accounts for the bulk of the
improvements in Table 4. In both cases this is made possible in the SEI model because starting with a number
of individuals in the incubator class allows a two-stage growth process for the adopters. Initially, the
incubators are depleted, allowing for a growth of adopters with a negative second derivative. This is the main
feature of SEI solutions, accounting for their better fit of the data relative to the SIR model. The two-stage
process is a property of the growth curve for adopters in the USA from the initial time until the early 1950s,
and to a lesser extent for Japan over the same period, after a slightly later start. The characteristic time at
which the curve changes concavity can be computed from the initial growth as

t� ’
1

�
ln

Eðt0Þ

Eðt0Þ þ Iðt0Þ
1þ

�þ m
b

Nðt0Þ

Sðt0Þ

� �� �
. (12)

This time is longest for the USA, on the order of 10 months, shortest for Japan at 2.3 months, and
about 5 months for the USSR, reflecting the relative values of the parameters � and b estimated for the
three countries. Beyond this point in time the effect of the incubator class is relatively negligible. For
Japan and the USSR, where � is largest, the class becomes essentially non-dynamical beyond the
initial transient, with E! bSI=ðN�Þ, and as a consequence the solutions look much like those of the SIR
model.
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Table 7

Parameter estimations for the SEI model for the adoption of Feynman diagrams in the USA, Japan, and the USSR

Parameter Best-fit Mean Std

USA

Sðt0Þ 478.515 398.691 61.990

Eðt0Þ 60.989 44.686 4.728

Iðt0Þ 0.020 0.160 0.135

� 0.257 0.391 0.055

b 1.041 0.951 0.086

m 0.025 0.040 0.012

L 45.385 40.052 6.467

R0 37.711 23.172 5.798

Japan

Sðt0Þ 30.248 31.037 2.190

Eðt0Þ 11.569 12.022 1.400

Iðt0Þ 0.153 0.165 0.129

� 2.361 2.009 0.279

b 5.956 4.417 0.787

m 0.039 0.044 0.013

L 12.067 12.578 1.093

R0 150.136 105.372 35.223

USSR

Sðt0Þ 3.074 0.810 0.722

Eðt0Þ 3.344 3.462 0.647

Iðt0Þ 0.682 0.738 0.266

� 1.713 1.613 0.476

b 3.715 3.589 0.753

m 0.067 0.075 0.035

L 17.819 19.372 3.668

R0 53.257 55.892 28.788
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In practice, the incubation periods estimated for the three countries are quite different. For the USA (see
Fig. 6), the best fit solutions prefer to start in 1949 with a relatively large number of incubators and an
incubation time of order 3–4 years. In both Japan and the Soviet Union the initial population included fewer
incubators but had a considerably shorter incubation time, of the order of 5–6 months in Japan and 7–8
months in the USSR. These incubation period estimates for Japan and the Soviet Union are unexpectedly
short, since most of the papers were authored by graduate students who took on average a few years of
training (‘‘incubation’’) before publishing. The small values for � thus reveal some limits of the simple
SEI model: in particular, simple progression to adoption (parameterized by �) does not capture the dynamics
adequately, since (as we know historically) the role of multiple contacts was important. We return to this
issue below.

Beyond the role played by the incubator class, we observed the same relative hierarchy of several important
quantities among the different national communities. Japan had the largest effectiveness of adoption, R0,
whereas both the USA and the USSR displayed smaller and statistically commensurate values for R0. (Data
were only collected for the USA and Japan for the period 1949–1954, because the steep rate of growth made
longer collection times infeasible. The slow rise of diagram adoption in the USSR, on the other hand,
encouraged us to collect data for a longer period, 1949–1959, making direct comparisons between late-time
behavior in the USA and the USSR difficult.) In every case the large values of R0 are essentially due to a long
lifetime of the idea, 1=m, of 13–40 years. The recruitment rates, L, similarly to the SIR estimates, are highest
for the USA, followed by the USSR, reflecting these national efforts to increase the numbers of new physicists.

In spite of all these qualitative similarities one should also keep in mind that the numerical values for each of
these parameters are generally different between the SIR and SEI models, and not always statistically
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compatible. Thus preference of one model over another can be determined via consideration of the goodness
of fit (Table 4), but should also take into consideration qualitative knowledge of the processes at play.

4.3. Results for models with incubation and competition: SEIZ

Finally, we consider the most complex model of our set, which includes an additional class Z much like that
of adopters, but which competes with I for susceptibles. Results of the parameter estimation procedure are
given in Table 8 and in Fig. 7.
Table 8

Parameter estimations for the SEIZ model and data for the spread of Feynman diagrams for the USA, Japan, and the USSR. We

restricted the estimation procedure to the regime where RI
04RZ

0 , see Eq. (9)

Parameter Best-fit Mean Std

USA

Sðt0Þ 98.973 108.662 5.852

Eðt0Þ 24.515 24.984 0.447

Iðt0Þ 5:916� 10�5 0.031 0.027

Zðt0Þ 0.114 0.160 0.119

� 0.202 0.210 0.009

b 0.488 0.496 0.012

b 0.164 0.156 0.117

l 0.311 0.252 0.171

m 0.025 0.032 0.006

p 0.570 0.566 0.052

r 11.893 11.549 0.330

L 49.527 47.860 1.555

RI
0

18.412 14.975 2.227

Japan

Sðt0Þ 24.806 24.798 1.356

Eðt0Þ 16.123 15.292 0.781

Iðt0Þ 1:35� 10�3 0.092 0.076

Zðt0Þ 0.333 0.517 0.452

� 0.995 0.976 0.077

b 2.365 2.341 0.115

b 0.077 0.378 0.351

l 0.365 0.406 0.227

m 0.031 0.036 0.009

p 0.007 0.068 0.051

r 3.897 4.008 0.461

L 11.553 12.033 0.634

RI
0

74.821 65.245 13.808

USSR

Sðt0Þ 1.064 0.957 0.609

Eðt0Þ 4.129 2.660 0.481

Iðt0Þ 0.954 0.980 0.151

Zðt0Þ 1.176 1.162 0.522

� 0.230 0.482 0.145

b 1.818 1.731 0.102

b 0.0112 0.267 0.187

l 0.730 0.649 0.247

m 0.075 0.070 0.023

p 0.097 0.104 0.071

r 3.340 3.341 0.506

L 18.134 18.288 1.785

RI
0

18.806 25.055 10.614
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Fig. 7. The best fit solutions of the SEIZ model (see Table 8) vs. the data for the USA, Japan, and the USSR.
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It is clear both from Table 4 and from Fig. 7 that the SEIZ model gives the best fits to data, particularly in
the case of the USA.

We observed that good solutions (with very similar smallest deviation per point) are possible with either
idea strand I or Z having the largest R0. In this sense our initial 6 years of data cannot determine which idea
strand, adopters or skeptics, will eventually win out over many generation times. In the parameter estimates
presented in Table 8 we have restricted the solutions to have RI

04RZ
0 , thus limiting the search space to the

historically sanctioned eventual domination of Feynman diagrams over other techniques. This does not
preclude the skeptics from growing initially in a population of susceptibles, and we find in fact that degenerate
solutions with and without a growing number of skeptics are possible.

A novelty of the SEIZ model relative to the SEI is that the progression to adoption can result from multiple
contacts, both while susceptible (parameterized by b) and while incubating (parameterized by r). For every
country the fact that p is small and r sizable makes adoption favored and faster through contact with adopters
while incubating, relative to simple progression as in the SEI model. This may indeed be the case in reality
since the learning of Feynman diagrams in the early years was characterized by extensive interpersonal
contacts at several stages of physicists’ apprenticeship. We know of only one case in all three countries in
which a few physicists learned about the diagrams sufficiently well from articles or textbooks alone. Practically
every adopter in all three countries is known to have interacted repeatedly with other adopters before using the
diagrams in their research [45].

We also observe that for the SEIZ model the relative magnitudes of the recruitment rates for the USA,
USSR, and Japan follow the trends observed in simpler models, while the same is approximately true also for
the effectiveness of adoption, R0. The estimated probability distribution function for RI

0 for Japan in the SEIZ
model is shown in Fig. 8. As with the previous model, the large values of RI

0 estimated in the SEIZ model are
mainly due to the very long lifetime of the idea.

Among the models discussed above we are, therefore, inclined to prefer the SEIZ model. Not only does it
best fit the empirical data, but it also includes effects that we know to have been important, such as latency
(apprenticeship), adoption through multiple contacts, and institutional and intellectual resistance. Estimated
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parameters, both in their orders of magnitude and (more important) in their relative sizes, reflect properties of
the idea’s spread in each national community that match qualitative expectations based on our empirical
knowledge of the process.

5. Conclusions

In this paper, we applied several population models, inspired by epidemiology, to the spread of a scientific
idea, Feynman diagrams, in three different communities undergoing very different social transformations
during the middle years of the 20th century. There is always a tradeoff between the use of models that include
more detail (heterogeneous populations) and highly aggregate simple models with a manageable number of
parameters. Although a model built under very simplistic assumptions is expected to have deep limitations, the
use of simple epidemic-type models has had tremendous success in the recent past, partly due to their ability to
use existing data to make predictions (treatment for HIV [8]) or recommendations (control measures for
SARS [56]). This is the thinking behind the model choices made above, which form in our opinion the simplest
synthesis of population standard modeling with sociological information at our disposal. Moreover, given the
relative sparsity of quantitative data on social dynamical processes at present such models may well prove to
be the most useful starting points for modeling.

We have found that suitably adapted epidemic models do a good job of fitting the empirical data, provided
we allow their parameters to be very different from those normally estimated for standard epidemics. In this
rough sense, the spread of Feynman diagrams appears analogous to a very slowly spreading disease, with
characteristic progression times of years instead of days or weeks. The spread of the diagrams also shows an
enormous effectiveness of adoption due primarily to the very long lifetime of the idea, rather than to
abnormally high contact rates.

The models give a quantification of parameters that are characteristic both of the idea and of the mixing
population in which it spreads. This allows a more precise discussion of the sociological reasons why the idea
evolved differently in distinct national communities. The initial velocity of spread of Feynman diagrams was
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fastest in Japan, followed by the USA, and slowest in the USSR, probably as a result of geopolitical
constraints that severely limited access to the idea and its practitioners. The effectiveness of the adoption,
encapsulated by R0, was consistently largest for Japan, most likely reflecting the high level of organization of
its scientific community in the difficult times that followed the end of World War II. To our knowledge, this is
the first time that basic reproductive number distributions have been estimated for the spread of an idea. The
USA and the USSR also show high recruitment rates, following the two countries’ massive investment in
nuclear and high-energy physics during the early Cold War. In this study, we have done what seems to be yet
uncommon in epidemiology, namely the estimation not only of model parameters and their variability, but
also of the effective population sizes of the communities involved.

In the process of constructing epidemiological-type models and estimating their parameters for the spread
of Feynman diagrams, we had to confront several conceptual issues concerning why the spread of ideas is or is
not analogous to that of a disease. One interesting aspect of the spread of ideas is the inadequacy (or
irrelevance) of the recovered state. In fact, many ideas may never be forgotten at all, as that would be in the
worst interest of the adopter. As a result, our parameter estimates consistently find very long recovery times,
1=g. The same holds for the exit rates, 1=m.

In spite of these slow rates of exit and recovery, individuals commonly have to acquire many ideas, and
these may in some cases be mutually exclusive, or at least may adversely affect the adoption of others. We
introduced a new class of simple models with multiple Z classes representing these strands. It is a curious, and
we believe important fact that the recruitment of individuals from a class of susceptibles to other ideas has the
same mathematical effect as vaccination against disease. In this sense ‘‘immunity’’ to an idea may be obtained
either by education about its possible implications (perhaps analogous to actual immunization), or by
distraction with other, more easily acquired concepts embodied by the Z classes.

We must emphasize that the behavior of individuals when exposed to ideas may be very different, indeed
opposite, to what they may do during an epidemic outbreak. First, people intentionally seek ways to extend
the infectious period of an idea, usually by recording it and storing it in various documents. In this sense, the
lifetime of an idea can largely transcend that of individuals. Second, short of vaccination the most effective
strategy to stop a disease epidemic is through isolation, which reduces the contact rate. Ideas, unlike diseases,
are usually beneficial and thus people’s behavior tends to maximize effective contacts. This pattern can be
captured through the mapping of the social network of contacts that underlie the spread of the idea, which we
analyze elsewhere [47]. There we show that the communities where Feynman diagrams spread the fastest had
created intentional social and behavioral structures that ensured very efficient communication of scientific
knowledge.

We finish by remarking that the SEIZ model, which included both skeptic and incubator classes, as well as
acceleration to adoption from incubation (parameterized by r), captures most adequately the role of such
classes in the transmission process, since it yields the best fits (smallest average deviations in Table 4).
Nevertheless the modeling of the spread of ideas discussed above is but a simple caricature of the complex
social dynamical processes involved. Our hope is that this work may bring a new and hopefully useful
quantitative perspective into the study of the diffusion of ideas, by the simplest means possible.
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Appendix A. Ensemble parameter estimation procedure

Here we give a short description of our parameter estimation procedure and uncertainty quantification.
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The problem of generating estimates for model parameters describing the spread of ideas is the absence of
clear quantitative expectations, both concerning which model should apply best and what the quantitative
value of its parameters should be. As such we devised a novel search method capable of both finding the best
fit to the data possible given a choice of model, but also of producing an ensemble of solutions that are
compatible with the data within a certain admissible error.

As a starting point we take the fact that simple population models cannot be expected to give perfect
descriptions of the data, resulting in a minimum level of discrepancy. We chose to parameterize this
discrepancy by a collective measure of the average absolute value of the deviation between the best model
prediction and each data point. This measure allows us to discuss and compare how good models are at
describing a specific data set. Our results are given in Table 4.

Second, we expect in general that data contains errors, e.g. early underestimation, false positives,
accounting errors. Thus a given level of uncertainty in the data will translate into parameter statistical
distributions that are compatible with those allowable deviations. This is a stochastic optimization problem
(see, e.g., Ref. [58] for a general discussion). Based on this idea we perform an estimation of the joint
parameter distribution of model parameters, conditional on a set of allowable deviations at each datum. To be
specific we can write that the unknown exact data point IEðtiÞ, measured at time t ¼ ti, can be written in terms
of the observed datum IOðtiÞ and an error xðtiÞ as

IEðtiÞ ¼ IOðtiÞ þ xðtiÞ. (13)

The error xðtiÞ is only known statistically. In order to proceed we must specify a model for x. Here we assumed
a simple Gaussian distribution such that

P½xðtiÞ� ¼ P½IEðtiÞ � IOðtiÞ� ¼Ne�x
2
ðtiÞ=2s2ðtiÞ, (14)

where N is the normalization factor and sðtiÞ parameterizes the expected error at time t ¼ ti.
This expectation for the errors can be translated into a commensurate fitness function (analogous to a

Hamiltonian in statistical physics) that can in turn be minimized in order to produce parameter estimates
through a search procedure. For each model realization (in terms of a set of parameters
S ¼ ðSðt ¼ t0Þ;Eðt ¼ t0Þ; . . . ;b; g; . . .Þ) we take this function to be

HðSÞ ¼
X

i

½IM ðtiÞ � IOðtiÞ�
2

2s2ðtiÞ
, (15)

which is an implicit function of S. If the model could generate exact results we could then make the natural
association IEðtiÞ ! IMðtiÞ. This is usually not the case, since a residual minimal deviation always persists. To
account for this, we normalize this function to zero by taking H 0ðSÞ ¼ H �H0, i.e., by subtracting the
minimal value of H, obtained for the best parameter set.

Given this choice of H 0 we can produce, in analogy with standard procedures in statistical physics, a joint
probability distribution for model parameters given by

PðSÞ�e�H 0 . (16)

This choice guarantees that all statistical moments are finite. This joint probability distribution can then be
used to compute any moment of any set of parameters, including single parameter distribution functions, and
cross-parameter correlations such as covariances. In Section 4, we show results for the single parameter
averages and their standard deviations. We also show some single parameter probability distribution
functions.

In general the estimation of this probability distribution can be obtained by randomly generating many
model parameter sets and weighing them according to Eq. (16). The procedure is slightly complicated because
we are dealing with an inverse problem in which, given a trial set of parameters, comparison with the data is
performed only after the non-linear model dynamical equations have been solved. Fortunately, for models
that consist of small numbers of ordinary differential equations the computational effort is not prohibitive.

In practice, we used an ensemble of trial solutions, from which we select a number of best strings, according
to a standard Monte Carlo procedure, weighted by Eq. (16), to generate the next generation of the ensemble.
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In order to do this we introduce a mutation implemented in terms of random Gaussian noise around the best
parameter sets. This yields an effective minimization method, capable of exploring large regions of parameter
space. It also creates as a byproduct an ensemble of good strings with small deviations to the data. For small
enough deviations from the best string we can sample parameter space in an unbiased manner. It is this
ensemble, and its best string, that is then used to estimate Eq. (16). Results given in Section 4 involve
ensembles with several million realizations and a choice of s, common to all points, corresponding to 10%
deviation between the best parameter estimate and other ensemble members.
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[7] F. Brauer, C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001.

[8] A.S. Perelson, et al., Science 271 (5255) (1996) 1582–1586.
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[17] B. González, et al., J. Math. Psychol. 47 (2003) 515–526.

[18] A. Rapoport, Bull. Math. Biophys. 15 (1953) 523–533.

[19] D.J. Daley, D.G. Kendall, J. Inst. Math. Appl. 1 (1965) 42–55.

[20] L. Adamic, B. Huberman, in: E. Ben-Naim, H. Frauenfelder, Z. Toroczkai (Eds.), Complex Networks, Lecture Notes in Physics, vol.

650, Springer, Berlin, 2004, p. 371.

[21] E. Adar, Z. Li, L.A. Adamic, R. Lukose, in: Workshop on the weblogging ecosystem, 13th International World Wide Web

Conference, New York, 2004; L.A. Adamic, E. Adar, Soc. Networks 25(3) (2003) 211–230.

[22] D. Kempe, J. Kleinberg, in: Proceedings 43rd Symposium on Foundations of Computer Science, IEEE Computer Society, Los

Alamitos, 2002, pp. 471–480.

[23] W. Kermack, A. McKendrick, Proc. R. Soc. London Ser. A 115 (772) (1927) 700–721.

[24] H. Hethcote, SIAM Rev. 42 (2000) 599–653.

[25] Y. Moreno, R. Pastor-Satorras, A. Vespignani, Eur. Phys. J. B 26 (2002) 521–529.

[26] R.L. Rosnow, Am. Psychol. 46 (1991) 484–495.

[27] P. Bordia, N. DiFonzo, Asian J. Soc. Psychol. 5 (2002) 49–61.

[28] J.J. Brown, P.H. Reingen, J. Consum. Res. 14 (1987) 350–362.

[29] D. Kempe, J. Kleinberg, E. Tardos, in: Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, ACM, New York, 2003.

[30] B. Allen, J. Math. Sociol. 8 (1982) 265–281.

[31] L.L. Cavalli-Sforza, M.W. Feldman, Cultural Transmission and Evolution: A Quantitative Approach, Princeton University Press,

Princeton, NJ, 1981.

[32] D.J. Bartholomew, Stochastic Models for Social Processes, Wiley, New York, 1982.

[33] G.R. Funkenhouser, M.E. McCombs, J. Math. Sociol. 2 (1972) 121–130.

[34] R.K. Karmeshu, R.K. Pathria, J. Math. Sociol. 7 (1980) 59–71.

[35] P.S. Dodds, D.J. Watts, J. Theor. Biol. 232 (2005) 587–604.

[36] W. Goffman, Nature 212 (5061) (1966) 449–452.

[37] For a recent review see A.N. Tabah, in: M.E. Williams (Ed.), Annual Review of Information Science and Technology (ASIS), vol. 34,

Information Today, Medford, 1999, p. 249.

[38] R.E. Dickinson, C.E.M. Pearce, Math. Comput. Model. 38 (2003) 1157–1167.

[39] D.H. Zanette, Phys. Rev. E 65 (2002) 041908.

[40] Y. Moreno, M. Nekovee, A.F. Pacheco, Phys. Rev. E 69 (2004) 066130.

[41] K. Thompson et al., Mathematical and Theoretical Biology Institute Technical Report, 2003, unpublished.

http://xxx.lanl.gov/abs/cond-mat/0212267


ARTICLE IN PRESS
L.M.A. Bettencourt et al. / Physica A 364 (2006) 513–536536
[42] F.M. Bass, Manage. Sci. 15 (1969) 215–277.

[43] D.P. Fan, J. Math. Sociol. 11 (1985) 1–23.

[44] D.P. Fan, R.D. Cook, J. Math. Sociol. 27 (2003) 29–51.

[45] D.I. Kaiser, Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics, University of Chicago Press,

Chicago, 2005.

[46] D.I. Kaiser, K. Ito, K. Hall, Soc. Stud. Sci. 34 (6) (2004) 879–922.

[47] L.M.A. Bettencourt, D.I. Kaiser, in preparation.

[48] S.S. Schweber, QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga, Princeton University Press,

Princeton, 1994.

[49] W. Goffman, V.A. Newill, Nature 204 (1964) 225–228.

[50] W. Goffman, V.A. Newill, Proc. R. Soc. London A 298 (1967) 316–334.

[51] W. Goffman, J. Assoc. Comput. Mach. 18 (1971) 173–185.

[52] D.I. Kaiser, Hist. Stud. Phys. Bio. Sci. 33 (1) (2002) 131–159.

[53] It is customary to model the movements out of the class E into the next class I by a term like �E. This corresponds to having

exponentially distributed waiting times in the E class. In other words, the simple progression rate �E corresponds to PðtÞ ¼ expð��tÞ
as the fraction that is still in the incubator class t units after entering this class, and to 1=� as the mean waiting time.
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