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Abstract. The use of network models to describe the impact of local spa-
tial structure on the spread of infections is discussed. In particular, we focus
on small-world networks, within which the pattern of interactions can be var-
ied from being entirely local to being entirely global as a single parameter
is changed. Analysis approaches from graph theory, statistical physics and
mathematical epidemiology are discussed. Simulation results are presented
that highlight the surprising findings of Watts and Strogatz [59], namely that
a small number of long-range interactions in an otherwise locally structured
population can markedly enhance the ability of an infection to spread and the
rate at which the spread occurs. We also discuss some of the implications of
such spatial structure on the dynamics and persistence of endemic infections.

1. Introduction

It has long been realized that the spatial structure of a population can have
a major impact on the spread of infectious diseases. While simple, non-spatial,
mathematical models have given many insights into the dynamics of transmission,
many situations call for more realistic models that include some description of
space.

The simplest epidemic models assume that the population is well-mixed, so
that any pair of individuals is equally likely to interact with each other during a
given time interval. Perhaps the simplest way of extending the model to account for
spatial structure is to subdivide the population into two or more ‘patches’ [10, 41],
representing, for instance, different cities. It is typically assumed that these patches
are well-mixed and that there is some level of mixing between different patches.
The between-patch mixing usually occurs at a much lower rate than within-patch
mixing. Such models are often termed metapopulation models.

An alternative way to describe spatial structure assumes that individuals are
distributed continuously across space and that infection spreads as individuals
move about the landscape. A random-walk description is often employed for this
movement, leading to the appearance of diffusion terms in the model: a so-called
reaction-diffusion model [50]. Another spatially continuous formulation assumes
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that individuals are fixed in space but are able to infect individuals at other loca-
tions, with the probability of transmission depending on the geographic separation
being described by an infectivity kernel [37]. Study of these model types has fo-
cused on the speed at which infection invades a population as it spreads outwards
from its initial point of introduction in a wave-like fashion [34, 57].

Metapopulation and spatially continuous models have dominated much of the
spatial epidemiology literature. These population-level models are typically cast as
either a set of coupled ordinary differential equations, in the case of metapopulation
models, or a partial differential equation or integro-differential equation, in the case
of spatially continuous models. Such models can be amenable to mathematical
analysis.

Network models [46] provide a quite different, individual-based, approach to
studying the impact of spatial structure. The members of the population are mod-
eled as the nodes of a network, and the edges of the network represent interactions
between people that could potentially lead to transmission of the infection. The
complexity of network models arises because they must account for each individual
in the population as well as describing how all of these individuals interact with
each other. The need to fully describe the interaction network is a major difficulty
for the practical application of network approaches.

An important use of network models has been as a research tool, providing a
framework within which the impact of the detailed assumptions of spatial structure
that underlie many of the population-level models can be explored. An issue of
particular interest is the way in which interactions that are specified in terms of the
behavior of individuals impact upon population-level behavior [17, 32], often dis-
cussed under the banner of ‘from individuals to populations’. With this approach,
one hopes to identify which features of individual-based models have an important
effect at the population level.

Much progress has been made by employing simple classes of networks that
capture particular aspects of population structure. For instance, in the case of
spatial structure, one might contrast settings in which mixing is mainly local in
nature against settings in which the population is essentially well-mixed. One
might then ask what happens in intermediate cases, where most of the mixing is
local but there are occasional long-range interactions.

While networks that exhibit purely local or purely global mixing have long been
studied, the introduction of small-world networks in a seminal paper by Watts and
Strogatz [59] enables the exploration of intermediate settings. The interest created
by this paper has led to a flourishing literature on network approaches in a diverse
range of settings.

This chapter reviews the recent literature on small-world networks as it relates
to epidemiological modeling. In Section 2 we introduce small-world networks, and
review their properties. Section 3 discusses the impact of small-world networks on
basic properties of epidemics, such as disease transmission thresholds. Section 4
considers the dynamics of epidemics, including the timecourse of outbreaks, the
probability of their occurrence and the size of the resulting outbreak. Section 5
considers dynamical issues in endemic settings, including the impact of stochasticity
on behavior near the equilibrium and the possibility of oscillatory behavior.
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2. Construction and Properties of Small-World Networks

Regular lattices and random graphs both have a long history of use in network
theory and as models for the structure of populations. A classic example of a
lattice model is provided by Harris’s contact process model [24]. Lattice models
assume that individuals are located at the sites of a regular lattice and connections
are made to some collection of the nearest neighbors of each site. As an example,
in one dimension, individuals may be regularly spaced along a line and each is
assumed to interact with their k nearest neighbors. In two dimensions, individuals
might be sited on a regular square grid, with connections made to their four nearest
neighbors (up, down, left and right: the so-called von Neumann neighborhood) or
their eight nearest neighborhood (up, down, left, right, and the four diagonals: the
Moore neighborhood). In order to avoid edge effects, periodic boundary conditions
are often imposed. In our one dimensional example, the line would be wrapped
around onto a circle so that the first and last individuals on the line would become
neighbors.

The random graph [11], most commonly associated with Erdös and Renyi from
their graph theoretical treatment of this setting, assumes that each pair of individ-
uals has some probability, q, of being connected. These connections are made ran-
domly and independently between the pairs. The major difference between regular
lattices and random graphs is that interactions are purely local in the former—
individuals are only connected to their neighbors—whereas interactions are purely
global in the latter: connections are made with no regard for the spatial location
of individuals.

Small-world networks, introduced by Watts and Strogatz [59], are intermedi-
ate between the regular lattice and a random graph. Watts and Strogatz produced
these networks by starting from a regular lattice and randomly rewiring a certain
proportion, p, of the network’s links. In this paper, we employ a rewiring process in
which both ends of the link are moved and connected randomly to other individuals
in the population1. These rewired edges are termed long-range connections: they
are made without any regard to spatial location and so will typically not be local
in nature. When the rewiring probability is zero, the process leaves the lattice un-
altered. When the rewiring probability approaches one, all of the links are rewired
and so have no dependence on spatial location. The resulting network is, in many
ways, similar to the random graph.

We remark that a special case of the Watts and Strogatz small-world network
was introduced in an earlier paper by Ball et al. [4]. Their ‘great circle’ model
locates individuals on a circle, with local connections being made to the closest
neighbors on the left and right, each with probability qL, and global connections
being made between any pair in the population with probability qR. Ball et al.
make the remark that their model could be generalized.

An attractive feature of the original Watts and Strogatz algorithm for gener-
ating small-world networks (and of the slightly altered algorithm that we employ
here) is that it preserves the total number of connections present in the original

1In their paper, Watts and Strogatz only moved one end of each rewired link. A systematic
method was used to determine which end of the link was moved: for their one dimensional circular
lattice, they looked at links in a clockwise sense and kept the first end of the link fixed. Each
node, therefore, would retain at least half of its original links, even if all links in the network are
rewired.
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Figure 1. Example networks. (a) Two dimensional lattice with
connections to the eight nearest neighbors (Moore neighborhood).
For clarity, we do not impose periodic boundary conditions. (b)
Random graph, with, on average, connections made to 8 neighbors
of each site. (It should be noted that not all of the connections are
visible: many of links are shown superimposed.) (c) Small-world
network obtained by randomly rewiring a fraction of the links of
the lattice. In this example, for which the rewiring probability was
low, just a single link has been rewired. Rewiring typically leads
to the appearance of long-range links.

lattice. This allows for a fair comparison to be made between the lattice and the
generated graph. Another variant of the generating algorithm involves the addition
of extra links, rather than the rewiring of existing links. It turns out that this latter
algorithm is mathematically a more satisfactory way of generating small-world net-
works. The fact that additional links are being added to the network must be kept
in mind: mixing is inherently greater in this latter small-world network, although
this effect is negligible if the probability of link addition is low.

2.1. Network Properties. In order to make precise the way in which small-
world networks fall between regular lattices and random graphs, we must first
introduce some of the measures by which networks are described.

A connected network is one for which infection could, in theory, travel from
any person in the population to any other person in the population. Such transmis-
sion will typically involve a chain of infections, involving a number of intermediate
individuals. The lengths of these transmission chains are captured by various no-
tions of distances in the network. The distance between two individuals is defined
as the length of the shortest path by which one can move from one individual to
the other. These distances can be summarized by a quantity such as the average
distance, taken over all pairs of individuals, which gives an idea of the typical
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distance between individuals [14, 59], or the diameter of the network, which is
the largest of the distances, taken over all pairs of individuals.

The number of (immediate) neighbors of a given individual is known as their
degree or connectivity and is typically denoted by k. Looking across the entire
population, these quantities give rise to the connectivity distribution (or de-
gree distribution). This distribution is often described in terms of its mean, often
written as 〈k〉, and variance. Positive values of this variance correspond to het-
erogeneous degree distributions. Much of the literature on network dynamics has
focused on the impact of hetereogeneity in the degree distribution [33, 43, 46, 51].
Many real-world networks exhibit marked variation in the connectivities of different
individuals, with, in many cases, the variance being much larger than the mean.
Such networks are often simply called heterogeneous networks, but since degree
hetereogeneity is not the only form of heterogeneity that a network can exhibit,
this abbreviated term should be used with some care if the context is not totally
clear.

Various measures of cliqueishness [26, 44, 45, 49, 59], including the cluster-
ing coefficient, transitivity and mutuality, examine the extent to which the neigh-
borhoods of connected individuals overlap. Cliques of size three arise when two
connected individuals have a common neighbor, leading to the appearance of trian-
gles in the network. The presence of such cliques is captured by the transitivity,
φ, of the network.2 All of the triples in the network (i.e. paths of length three:
instances in which individual A is connected to individual B who is connected to
individual C) are examined and φ is calculated as the fraction of these that close
up into triangles (i.e. those for which individual A is also directly connected to
individual C) [26, 45].

Clearly φ does not capture all aspects of cliqueishness, as illustrated by the case
of a two dimensional lattice with the von Neumann neighborhood. This network
contains no triangles, so φ is equal to zero. Instead, its cliques involve loops of length
four, a property captured by the mutuality [44] of the network. More generally,
the notion of cliques can be extended to cliques of various sizes, corresponding to
the existence of short length loops of varying lengths.

Regular lattices are connected networks. A consequence of the local nature
of the interactions in a regular lattice is that path lengths are long. For regular
d-dimensional cubic lattices with linear dimension L, so that N = Ld, path lengths
scale linearly with L, or, in terms of the population size, scale as N1/d [48, 59].
Typical path lengths are shorter when individuals are more highly connected, with
path lengths scaling with the reciprocal of the linear dimensions of the neighbor-
hood [48, 59]. This means that path lengths scale with the reciprocal of the the
connectivity if the neighborhood consists of the k nearest neighbors on a one di-
mensional lattice or in a k-sized von Neumann neighborhood in two dimensions
(i.e. individuals are connected to their closest k/4 neighbors in the up, down, left
and right directions). The local structure also means that regular lattices exhibit
high levels of cliqueishness (see figure 2c). (As an example, for the lattice that we
employ in our epidemic simulations—see the caption of figure 3 for details of its

2Some authors refer to φ as the clustering coefficient. Unfortunately, there is another measure
of cliqueishness that is also known as the clustering coefficient [59]. Consequently, to minimize
confusion, we avoid using the term here.
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construction— it is straightforward to show that φ = 2/3.) All individuals in a
lattice (excepting those on the edge of the lattice if periodic boundary conditions
are not imposed) have the same number of neighbors: the connectivity distribution
is homogeneous.

a) b)

A

B

c)

Figure 2. Network Properties. (a) and (b) Path lengths are long
in the regular lattice, but are rapidly shortened with the inclusion
of long-range links. (c) Cliques are common in regular lattices.
In this example, we focus on two individuals, A and B, who are
connected. We see that four individuals are neighbors of both A
and B. Notice that these cliques correspond to the occurrence of
triangles in the network.

Random graphs are not necessarily connected. If the connection probability,
q, is small then the graph is typically composed of a large number of small, dis-
connected components [11]. The distribution of the sizes of these components is
exponential with finite mean, even as N tends to infinity. The typical size of these
components is O(1): their average size does not scale with N (provided that N is
sufficiently large)3. When q is sufficiently large, the random graph typically consists
of one connected subgraph that includes a large fraction of the population, together
with a number of small disconnected components. This component is known as the
‘giant component’ of the graph and its size is O(N) (that is to say, the size of the
giant component scales linearly with N : notice that its average number of nodes,
therefore, diverges as N → ∞, but that average fraction of nodes in the giant
component approaches a constant). The size distribution of the remaining small
components is exponential, with finite mean. Again, the typical size of these is
O(1). A well-known theorem [11] makes these statements more precise, stating

3The size of the largest of the small components scales with the logarithm of N . This is
because the number of small components increases as the number of nodes increases, so the tail
of the size distribution is explored more fully.
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that (for N → ∞) the random graph has a (single) giant component if and only if
Φ = Nq is greater than one. (We shall see that Φ is simply the average connectivity
of the nodes in the network). This component then contains a proportion z of the
population, where z is the greatest root of the equation

z = 1 − exp(−Φz).(1)

The global nature of mixing in random graphs means that distances are short
compared to those in regular lattices. Path lengths scale with the logarithm of
the population size and with the reciprocal of the logarithm of the average con-
nectivity [59]. Cliques are rare in random graphs, with φ scaling as 1/N for large
N [46, 59]. The connectivities of the nodes of the random graph are binomially
distributed, according to B(N − 1, q). For large N this distribution approaches
a Poisson distribution with mean (N − 1)q ≈ Nq. Since the variance and mean
are equal for Poisson distributions, the variance of the connectivity distribution
equals Nq. We remark that the connectivity distribution of the random graph is
not very heterogeneous: few nodes have connectivity that differ that greatly from
the average.

For small values of the rewiring parameter, p, (or for a small frequency of
additional links) most of the links in the small-world network are simply those of
the lattice and there are only a few long range connections. The surprising result of
Watts and Strogatz is that these few long-range connections rapidly shorten path
lengths in the network. As the parameter p is increased, path lengths quickly fall to
become comparable to those in the random graph [59]. Cliqueishness, on the other
hand, is much less affected by rewiring: it is not until p takes values approaching
one that the remnants of the highly clustered lattice are destroyed by rewiring.
For a wide range of p values, the Watts and Strogatz algorithm generates networks
that have the short path length of the random graph while having the high level of
cliqueishness of the lattice: this is the small-world regime. Small-world networks,
in this sense, exhibit both local and global mixing properties.

The heterogeneity of the small-world networks generated using the Watts-
Strogatz method is intermediate between those of the lattice and the random graph.
In the p = 1 case, the degree distribution of the Watts-Strogatz graph generated
using their original algorithm (in which only one end of each link is rewired, with
the fixed end being chosen systematically) has a lower variance than that of the
Poisson distribution of the random graph [6]. In this respect, their totally rewired
graph differs from the random graph4. The rewiring algorithm that we employ, in
which both ends of links are rewired, leads to a degree distribution that is closer to
that of the random graph. (The resulting graph is still not quite the Erdös-Renyi
random graph described earlier, since the total number of links in the network is
fixed.) In none of these cases, however, is the variance particularly large and so
heterogeneity of the degree distribution will not play a major role in the dynamics
of infections on the graphs considered here.

We remark that many networks with heterogeneous degree distributions also ex-
hibit short average path lengths [14]. Here, we restrict use of the term ‘small-world
network’, and our attention, to the Watts-Strogatz type of small-world network.

4Also recall the earlier comment that the original Watts and Strogatz algorithm guarantees
that each node has connectivity at least 〈k〉/2. The resulting network—even when fully rewired—
is guaranteed to remain connected. In contrast, the rewiring algorithm that we employ in this
paper can lead to nodes becoming disconnected.
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Figure 3. Path lengths and cliqueishness in small-world networks.
Small-world networks were generated using the Watts and Stogatz
method [59]. Starting from a one dimensional lattice of 1000 indi-
viduals, each of which were connected to their ten nearest neigh-
bors, links were rewired using the rewiring technique discussed
in the text. Periodic boundary conditions were assumed. The
solid curve with squares shows the dependence of the average path
length, relative to the average path length of the unrewired lattice,
on the per-link rewiring probability, p. The broken curve with cir-
cles shows the cliqueishness, as measured by the transitivity (φ),
relative to that of the unrewired lattice, which equals 2/3. Each
point on the figure represents the average value taken over 200
realizations of the rewired network.

3. Analysis Techniques and Basic Properies

We first consider a particularly simple infection process. Individuals are as-
sumed to be initially susceptible to the infection. An infectious individual can
transmit infection to a susceptible; we assume that, once infected, the person is
infectious immediately. Over time, infectious individuals can recover and it is as-
sumed that recovery confers permanent immunity to the infection. This description
of infection is known as the SIR (susceptible/infectious/recovered) process [1, 15].

It is typically assumed that there is a constant rate of transmission between an
infective and susceptible who are in contact, and that this rate is the same for all
such infective/susceptible pairs. Writing this transmission rate as β, we have that
the probability of transmission in the short time interval (t, t + dt) is equal to β dt.
The recovery process can be described in many different ways, but most often it is
either assumed that recovery occurs at a constant rate, γ, or that recovery occurs at
some fixed time, τ , after infection. The constant recovery rate assumption leads to
the distributions of infectious periods being exponentially distributed, with mean
equal to 1/γ. In order to compare the two descriptions of recovery, the values of τ
and 1/γ are taken to be the same.

3.1. Well-Mixed Population-Level Models. A familiar population-level
description of the SIR process in a well-mixed population, assuming a constant rate
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of recovery, is given in terms of the following set of differential equations [1, 15]

ẋ = −cbxy(2)
ẏ = cbxy − γy(3)
ż = γy.(4)

Here x, y and z denote the fractions of the population who are susceptible, infectious
and recovered, respectively. In this formulation, the parameter c is the rate at which
an individual makes contacts with others and the parameter b is the probability
that a given contact (if made between an infective and susceptible) would lead
to transmission of the infection. This formulation assumes that the population is
closed: no individuals leave or enter the population, so one need not worry about
demographic processes. As a consequence, equation (4) is redundant: because
an individual is either susceptible, infectious or recovered, one can calculate z as
1 − x − y.

The behavior of this deterministic model is well known [1, 15]. Since there
is no replacement of susceptibles, introduction of infection either leads to a single
epidemic, which is self-limited due to the ensuing depletion of susceptibles, or no
epidemic occurs. A threshold condition governs the occurrence of these alternatives:
if the value of the so-called basic reproductive number, R0, is greater than one then
an epidemic can occur, otherwise the number of infectives can never increase.

The basic reproductive number can be written in terms of model parameters
as

R0 = cb/γ,(5)

and has a simple epidemiological interpretation. For the initial stages of the out-
break, when almost the entire population is susceptible, the parameter c gives the
rate at which an individual, in particular an infective person, encounters susceptible
individuals. Since 1/γ is the average duration of infection, c/γ gives the average
number of susceptibles encountered over their infectious period. As the product of
the average number of susceptibles encountered and the transmission probability,
R0 gives the average number of secondary infections that arise when an infectious
individual is introduced into an otherwise entirely susceptible population. In this
well-mixed deterministic setting, and in the absence of demography, the value of
the basic reproductive number does not depend on the distribution of infectious
periods: R0 reflects the average number of secondary infections rather than the
timing of their occurrence.

The total fraction of the population who become infected over the course of the
entire epidemic, which we call the size of the epidemic and write as y∞, is given by
the largest root of the following equation

y∞ = 1 − exp (−R0y∞) .(6)

If R0 is greater than one then this quantity is positive.
In the preceding discussion, we deliberately used different parameterizations for

the transmission processes in well-mixed settings and in network settings. Many
studies have compared infection dynamics in these two settings, in which case one
must be able to move between the two parameterizations in order to make com-
parisons. In such studies, the parameter combination cb is typically identified with
βk [26, 28]. Use of the well-mixed description, together with this identification
of parameters, leads to the expression R0 = βk/γ, or R0 = βkτ , for the basic



10 ALUN L. LLOYD, STEVE VALEIKA, AND ARIEL CINTRÓN-ARIAS

reproductive number for random networks5. As we shall see below, more careful
consideration shows that this expression is incorrect in a couple of important ways
for network settings.

3.1.1. Stochastic Models in Well-Mixed Settings. The deterministic models of
the previous section treated the numbers of susceptible, infectious and recovered
individuals as continuously varying quantities, whose changes could be described
by a set of differential equations. In reality, the numbers of individuals of different
types are integers, and change discretely as infection or recovery events occur. The
finite size of a population and the ensuing stochastic effects (known as demographic
stochasticity) can be accounted for using stochastic formulations of the well-mixed
model (see, for example, [3]).

The stochastic well-mixed model also exhibits threshold effects as the basic
reproductive number, which is again given by equation (5), is increased from below
to above one [3, 15]. Below the threshold, each infective gives rise to an average
of fewer than one secondary infection and so introduction of a single infective (or
a small number of infectives) can only give rise to a minor outbreak. It should
be noted that some of these ‘minor’ outbreaks can involve a significant number of
individuals: even though the average number of secondary infections is less than
one, chance events can lead to a few individuals having many more secondary
infections than this.

Above the threshold, introduction of infection can lead to a major outbreak,
potentially affecting a large fraction of the population. Large outbreaks are not,
however, guaranteed to occur since it is possible for an infective to recover before
passing on the infection. Stochastic extinction can occur if this happens for all of
the infectives present at some point in time: a minor outbreak will occur if this
happens early after the introduction of infection.

Using branching process theory, expressions have been derived for the proba-
bilities of the occurrence of major and minor outbreaks when R0 is greater than
one (see, for example, [15]). The most familiar result states that, for the constant
recovery rate model, the probability of a major outbreak occurring following the
introduction of a single infective is 1 − (1/R0). If recovery is instead assumed to
occur at exactly time τ after infection, the probability of a major outbreak, π, is
given by the largest root of

π = 1 − exp(−R0π).(7)

3.2. Percolation and Graph Theory Approaches. The similarity be-
tween equation (1) for the size of the giant connected component of a random
graph and equation (6) for the size of an epidemic in a well-mixed population (and,
indeed, equation (7) for the probability of a major outbreak) is no coincidence.
The corresponding threshold conditions for the connectedness of the random graph
(average connectivity greater than one) and the R0 = 1 threshold (average number

5This expression ignores all sources of heterogeneity in the network, including heterogeneity
in the connectivity distribution. Degree heterogeneity can be accounted for in the differential
equation framework by subdividing the population into subgroups according to individuals’ con-
nectivities. Use of this approach has led to the development of analogous expressions for R0 that
account for heterogeneity in the degree distribution [33, 51].
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of secondary infections greater than one) are also similar to each other6. Noted by
Barbour and Mollison [5], questions concerning epidemic processes on networks can
be rephrased in terms of questions about the properties of graphs. As Barbour and
Mollison point out, this means that the body of theory developed to describe the
properties of graphs is informative about epidemic processes that occur on those
graphs. One such approach that has been fruitfully applied is percolation theory.

The bond percolation problem on a graph [23] assumes that each edge in the
graph can independently be traversed with some probability, q. Percolation theory
then addresses questions such as the extent to which the network can be traversed.
The earliest percolation studies focused on regular lattices and so the nature of
percolation on such lattices has been described quite fully [23]. Following the
introduction of small-world networks, their percolation properties have been char-
acterized in detail [38, 39, 42, 47].

We note that the construction of a random graph can be described in terms of
the bond percolation problem by starting with a completely connected graph and
then taking the traversal probability of each edge of the connected graph to be q.

Grassberger [22], assuming that transmission rates were equal along each edge
in the network and that individuals had a fixed duration of infection, noted that
the spread of infection on a graph could also be mapped onto the bond perco-
lation problem. In this simple epidemiological setting the correspondence with
bond percolation is intuitively clear: transmission along an edge occurs with some
probability, known as the transmissibility, which we then interpret as the traversal
probability in the bond percolation model. We can then follow the infection spread-
ing across the network and ask about the size of the network component that can
be reached from the initial infective if one follows edges along which transmission
occurs. (We remark that not all traversable edges in the bond percolation model
will correspond to transmission events. Only traversable edges that can be reached
from the initial infective can be interpreted in this way; the extra edges are not of
interest in the infection context.)

Sander and co-workers [55] generalized this approach to a broad class of epi-
demic models. Newman [43] gives a lucid description of the correspondence be-
tween epidemic spread and percolation. Since the percolation problem is, for a
given network, formulated solely in terms of the probability of transmission along
edges (assuming that one node is infective and the other susceptible), the rates of
transmission along edges and the durations of infection of nodes need not all be the
same. Newman argues that percolation approaches can be applied to any setting
in which these quantities are independent, identically distributed quantities, since
then the probabilities of transmission are, a priori , equal along all edges. In such
situations, the transmissibility is calculated by averaging over the distribution of
infectious periods and the distribution of transmission rates [43]. This argument
does not hold when, for instance, transmission rates and/or infectious periods are
drawn from different distributions for different edges and/or nodes and the result-
ing transmission probabilities differ between edges. Newman [43] shows that the
percolation approach can still be useful even in some such instances, although the
problem is no longer described in terms of a single transmissibility.

6There are also clear analogies between the preceding discussions of the component size dis-
tribution of the random graph and the occurrence of minor and major outbreaks in the stochastic
well-mixed model.



12 ALUN L. LLOYD, STEVE VALEIKA, AND ARIEL CINTRÓN-ARIAS

For the simple SIR processes introduced at the start of section 3, the transmis-
sibility depends on the transmission rate along edges, β, and the infectious period
distribution. If the duration of infection, τ , is the same for all individuals, we have
that T = 1 − exp(−βτ) [28, 43]. For the constant recovery model (exponentially
distributed infectious periods with mean τ), averaging over the infectious period
distribution gives T = βτ/(1 + βτ) [28].

We notice that if the product βτ is small compared to one, then either of the
above expressions for T can be well approximated by βτ . Intuitively, this makes
sense since the product of the per-link transmission rate and the average duration
of infection will approximately equal the transmission probability along the link,
provided that this product is not too large. (That βτ is just an approximation to
the transmission probability is immediately clear since it can take values greater
than one.)

3.2.1. Percolation Theory and Epidemic Thresholds. The results of percolation
theory show that threshold behavior is typical in these systems. As in the earlier
discussion of the construction of the random graph, there is a critical value of the
traversal probability, below which the traversable network consists of a large number
of small components, which have typical size O(1), and above which the traversable
network consists of a single giant component, of size O(N), and a number of small
components. In the epidemiological interpretation, there is a critical value of the
transmissibility, below which only minor outbreaks occur and above which either
major or minor outbreaks can occur. A major outbreak will occur if the initial
infective is located in the giant component, and a minor outbreak will occur if the
initial infective is located in one of the small components. The probability of the
occurrence of a major outbreak, therefore, is equal to the fraction of nodes that are
found within the giant component. This threshold behavior is precisely that of the
epidemiologically familiar R0 = 1 threshold, as described above in the case of the
well-mixed stochastic model.

Percolation theory can be used to quantify the threshold and give a detailed
account of behavior near the threshold (so-called ‘critical behavior’), in addition
to yielding information about the probability distribution of outbreak sizes and
the probability of the occurrence of an outbreak. For example, Grassberger [22]
describes power law (scaling) behavior in the outbreak probability when the trans-
missibility is just above the threshold, and in the outbreak size distribution when
the transmissibility is just below threshold (see also [54]).

One important difference between network settings and the population-level
well-mixed models is that individuals have a fixed set of contacts. This leads to
some important differences in the expression for the basic reproductive number,
even for the random graphs that attempt to model well-mixed settings. If, in a
large well-mixed population (i.e. a random network), every individual is assumed
to have exactly k neighbors, and it is assumed that there are no loops of short
length in the network, then the basic reproductive number is given by [15, 16]

R0 = T (k − 1).(8)

In the language of percolation theory, there is a critical value of the transmissibility,
given by TC = 1/(k − 1), above which large outbreaks can occur [43].

Notice that R0 depends on the number of neighbors minus one. Every indi-
vidual who transmits infection, except for the initial infective, can have at most
k − 1 susceptible neighbors because they must have acquired infection from one
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of their neighbors. Also notice that the value of the basic reproductive number
now depends on the infectious period distribution, although this dependence will
be weak if βτ is small.

It is instructive to compare expression (8) to the simple-minded expression
R0 = βkτ obtained using the population-level well-mixed model. Two differences
can be seen: the latter involves k and not k − 1, and, since βτ can be greater than
one, the average number of secondary infections can exceed k. These deficiencies
arise because the well-mixed model does not account for individuals having a finite
number of neighbors.

Using branching process theory, Diekmann and co-workers [15, 16] derived a
formula, valid for N → ∞, for the average final size of a major outbreak in the
k-neighbor random graph described above, following the introduction of a single
infective. If R0 is greater than one, it can be shown that the following equation

θ = (1 − T + θT )k−1(9)

has a unique solution for θ in (0, 1). Diekmann et al. then showed that the final
size of the epidemic (i.e. the fraction ever infected), y∞, is given by

y∞ = 1 − (1 − T + θT )k .(10)

As discussed earlier, y∞ also gives the probability of the occurrence of a major
outbreak. In the limit as k → ∞, if β is scaled inversely with the connectivity7,
Diekmann et al. note that equation (6) is recovered.

Clique structure also impacts the spread of infection [9, 26, 45], since it reduces
the number of secondary infections that each individual can cause. Using figure 2c
as an example, imagine that individual A is the initial infected individual and
that they infect person B. Although both individuals still have seven susceptible
neighbors, four of these neighbors are shared and so the maximum number of further
secondary infections is just ten. From the viewpoint of transmission, localized
interactions mean that there are a large number of wasted contacts. Consequently,
the value of the basic reproductive number is lower than in comparable well-mixed
settings. This leads to outbreak sizes being smaller in cliqueish networks [26, 45],
although Newman points out the counterintuitive result that cliqueishness can make
it easier for these smaller outbreaks to occur when the transmissibility is low [45].

Threshold values of the transmissibility for lattices and small-world networks
can can be obtained using percolation results. As mentioned above, percolation
on regular lattices has received much attention and so critical values are known
for many bond percolation problems. For the two dimensional lattice with the von
Neumann neighborhood (i.e. connections are made to the four nearest neighbors),
it is known that the percolation threshold occurs at q = 1/2 [23]. The percolation
problem on small-world networks has also received much attention [38, 39, 42, 47].
Moore and Newman [38, 39] provide solutions for the bond percolation problems
on one dimensional small-world networks for which connections are made either to
the nearest neighbors or the two nearest neighbors on either side of each individual.
They point out that their approach could be extended to more highly connected
settings, but that the calculations rapidly become more involved as k increases. It

7This corresponds to the notion that as a person makes contacts with more people, they will
spend less time in contact with each of them: their infectivity is diluted across their neighbors.
This corresponds to the formula cb = kβ discussed in Section 3.1.



14 ALUN L. LLOYD, STEVE VALEIKA, AND ARIEL CINTRÓN-ARIAS

should also be pointed out that they describe their approach for the variant small-
world generating algorithm in which long-range links are added in addition to those
of the lattice, rather than the rewiring approach that we adopt here.

Heterogeneity of the network’s degree distribution impacts the spread of infec-
tion. A well-known formula, appropriate for a particular mixing pattern known as
proportionate mixing, illustrates how heterogeneity inflates the basic reproductive
number [2, 15, 36, 43]:

R0 = T

(
〈k〉 − 1 +

Var(k)
〈k〉

)
.(11)

Here 〈k〉 and Var(k) denote the mean and variance of the degree distribution,
respectively. Many real-world networks have highly heterogeneous degree distribu-
tions: in such instances, the expression for the basic reproductive number may be
dominated by the variation in the degree distribution, rather than its average.

Andersson [2] (see also [15, 36, 43]) derived the following expressions that can
be used to calculate the probability of the occurrence of a major outbreak and the
average size of the resulting outbreak in this heterogeneous setting

θ =
∞∑

k=1

kµk

〈k〉 (1 − T + θT )k−1(12)

y∞ = 1 −
∞∑

k=1

µk (1 − T + θT )k .(13)

Here µk are the elements of the connectivity distribution. These expressions are
analogous to equations (9) and (10), but are weighted by the connectivity distribu-
tion or, in the case of equation (12), by the distribution that depicts the probability
that a randomly chosen contact is with an individual of connectivity k.

For the random graph, with its Poisson distributed degree distribution, equa-
tion (11) reduces to R0 = T 〈k〉. This small adjustment echoes the earlier observa-
tion that the networks under consideration here are fairly homogeneous: the issue
of heterogeneity is not a major concern for this study. (We remark that the R0 for-
mula looks like the one obtained for the well-mixed deterministic model in section
3.1. That expression, however, ignored heterogeneity and so is not directly com-
parable: incorporation of heterogeneity within the deterministic framework would
also lead to an inflation of the value of R0, and in a way that is quite analogous to
equation (11) [33, 51].)

3.3. Pair Models. Percolation theory is not the only approach that has been
used to address questions such as whether an infection can spread on a given net-
work, the resulting outbreak size distribution or the temporal dynamics of this
spread.

Infection spreads less rapidly on a typical network than it would in a well-
mixed population. In the latter, a single infective can directly infect any susceptible
individual because everyone interacts with everyone else in the population. Unless
the network is completely connected, each individual will have fewer than N − 1
neighbors, and so infection must travel via intermediate individuals in order to
reach everyone in the population.
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In contrast to well-mixed settings, transmission rates for general networks can-
not be adequately described just in terms of the numbers of susceptibles and in-
fectives. Rates of transmission depend on the configuration of these susceptibles
and infectives, depending on the number of instances in which a susceptible is
found to be in contact with an infective individual: we might term these instances
susceptible-infective pairs.

a) b)

Figure 4. Spread of infection depends on the configuration of
pairs. The network fragments in both (a) and (b) have five suscep-
tibles (unshaded circles) and one infective (shaded circle). Infection
will clearly spread more rapidly in (b) than in (a) because the single
infective is connected to more susceptibles. In (a), we have four S-
S (susceptible-susceptible) pairs and one S-I (susceptible-infective)
pair, whereas in (b) we have five S-I pairs.

Pair models [9, 19, 26, 53, 56] attempt to capture this structure, keeping
track of the numbers of pairs in which individuals of different types are connected.
Differential equations then describe how the numbers of the different types of pairs
change over time. Keeling [26] derives the following set of equations for the dy-
namics of pairs for the SIR process

˙[SS] = −2β[SSI](14)
˙[SI] = β ([SSI] − [ISI] − [SI]) − γ[SI](15)
˙[SR] = −β[RSI] + γ[SI](16)
˙[II] = 2β ([ISI] + [SI]) − 2γ[II](17)
˙[IR] = β[RSI] + γ ([II] − [IR]) .(18)

Here, the number of X-Y pairs is denoted by [XY ], where X and Y can denote S, I
or R type individuals. For book-keeping reasons, [XX ] denotes twice the number
of X-X pairs. The number of X-Y-Z triples is written as [XY Z]. Notice that it is
not necessary to have equations that track the numbers of individuals of each type,
which in Keeling’s notation would be denoted [X ]: these quantities can always
be calculated in terms of the numbers of pairs involving the type of interest. For
example, the number of susceptible individuals can be calculated if the numbers of
S-S, S-I and S-R pairs are known.

One feature of these equations is that the rates of change of pairs involve the
configuration of triples. If one looked at equations for triples, one would find that
they involve quartets, and so on. In order to usefully employ this approach, the
set of equations is truncated (or closed) at some order. One way to do this is via
so-called pair approximations, in which the configuration of triples is described, in
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an approximate way, in terms of the configuration of pairs. This then eliminates
the need for equations that describe how the numbers of triples evolve over time,
leaving a closed set of equations for the numbers of pairs. We remark that the
use of the pair approach for this SIR process replaces a two dimensional model,
equations (2) and (3) by a five dimensional system.

Various pair approximations can be made, reflecting the geometry of the net-
work. A different approximation would be more suited to graphs that are similar
to random graphs than would be appropriate for ones that are similar to lattices.
Keeling [26] considers graphs for which each individual has k neighbors and that
are further specified in terms of their cliqueishness, as measured by the transitivity,
φ. He uses the following approximation

[ABC] ≈ k − 1
k

[AB][BC]
[B]

(
(1 − φ) + φ

N

k

[AC]
[A][C]

)
,(19)

first described by Morris [40], to close the set of moment equations, where N is
the population size. Bauch [9] calls this the triangular pair approximation, since it
accounts for the occurrence of triangles in the network. The accuracies of various
pair approximations in lattices with various different geometries are discussed by
Bauch [9], in which it is pointed out that the standard pair approximation often does
not provide a completely satisfactory description. (For this reason, the predictions
made by pair models are almost invariably compared to those obtained by numerical
simulation of the full network model.)

A number of techniques are available that extend these pair models [8, 9,
19], including extending the set of equations to account for the configuration of
triples [8, 9]. Alternatively, in a disease invasion setting, the so-called invasory pair
approximation attempts to account for the structure of the clusters that develop
during the invasion process [9]. Another approach for invasion settings, the pair-
edge approximation [19], attempts to describe the leading edge of the invasion wave
front, enabling estimation of the speed at which the infection spreads across the
population.

Threshold results can be obtained using pair models, and their extensions, by
examining whether infection can invade a population or not. This question is more
difficult to address in the five dimensional pair model than it is in the standard
deterministic SIR model. This task can be simplified somewhat on account of the
spatial structure that quickly develops during the invasion of the infection. This
allows quasi steady state assumptions to be made, reducing the dimensionality of
the system and facilitating the calculation of thresholds [9, 19, 26].

The system of pair equations can be integrated, allowing the final size of the
epidemic to be calculated. Typically this integration can only be carried out nu-
merically.

4. Epidemic Dynamics

The impact of various aspects of network structure on the spread of infection is
easily understood in terms of the preceding discussion. All other things being equal,
infection will spread more readily and rapidly when the average connectivity of
individuals is higher. Highly localized mixing hinders the spread of infection, both
because of cliqueishness, which leads to wasted contacts, and because long path
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lengths mean that infection must travel through a large number of intermediates
in order to spread across the entire network.
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Figure 5. Averaged timecourse of epidemics on a few of the net-
works depicted in figure 3, generated using the Watts-Strogatz
method, under the SIR infection process assuming that β = 1.0
and that each infection lasts exactly one time unit (i.e. τ = 1).
The upper panel depicts the prevalence of infection (i.e. the num-
ber of infectious people at each point in time) and the lower panel
depicts the cumulative incidence (i.e. the total number of cases
up to the time point). The solid curves illustrate simulations on
the lattice (p = 0), and the dashed curves illustrate simulations
on the random graph generated by rewiring all the links of the
lattice (p = 1). The dotted curves denote the intermediate case of
a small-world network, with just one percent of the lattice’s links
being rewired (p = 0.01). Curves are calculating by averaging over
1000 realizations of the model.

Epidemics on lattices, therefore, spread slowly and exhibit high degrees of spa-
tial structure. If infection is introduced at a single location, this spread will take
the form of an outward spreading wave, the speed of which will depend on epi-
demiological parameters and the geometry of the lattice. Epidemics on random
graphs spread much more rapidly and exhibit little or no spatial structure. Epi-
demics on small-world networks will be intermediate between these two extremes,
and so spread at some intermediate speed. Their spatial structure will involve a
number of growing clusters of infection: the mainly local nature of mixing means
that there will be wave-like spread out from a point of introduction, but long-range
transmission events will often take infection to virgin territory, giving rise to new
clusters of infection.



18 ALUN L. LLOYD, STEVE VALEIKA, AND ARIEL CINTRÓN-ARIAS

Figures 5-7 illustrate several aspects of epidemic dynamics, summarizing the
results of repeated stochastic simulation of the SIR process on graphs generated
by the Watts-Strogatz small-world algorithm. Figure 5 depicts the timecourse of
epidemics, averaged over 1000 realizations of the model, assuming three different
values of the Watts-Strogatz per-link rewiring probability. In this figure, the pa-
rameter values are chosen so that the transmissibility is quite some way above the
epidemic threshold. The spread of infection is much faster in the random graph
than in the lattice. Following a short initial transient, in this case so short that it
is barely noticeable on the scale of the figure, the cumulative incidence increases
linearly with time for a long period in the lattice, reflecting the wave-like spread of
infection outwards from the point of introduction. The impact of long-range links is
dramatic: a rewiring probability of just one percent turns the lattice into a network
on which infection spreads considerably faster.

An interesting observation [30] is that the timecourse of the epidemic in the
small-world regime echoes that of a standard SIR model, albeit with different values
of its parameters. This idea has recently been taken up by Aparacio and Pascual
(manuscript in prep.) who modify a standard SIR model to capture some of the
features of spatial structure, such as the local depletion of susceptibles within infec-
tion clusters, providing a description of the epidemic in terms of a low dimensional
dynamical system.

Figure 6 illustrates the distribution of outbreak sizes that are seen when a single
infective is introduced into an otherwise susceptible population. The parameter
values in figure 6 are chosen to be closer to the epidemic threshold than those
of the previous figure, with the transmissibility of this infection equalling T =
1 − exp(−0.2) ≈ 0.181. For the completely rewired network, use of expression (8),
derived for the k-neighbor random graph setting, gives R0 ≈ 1.63. Accounting for
the heterogeneity of the random graph, expression (11) gives the slightly higher
value of R0 ≈ 1.81. In either case, the R0 value (for the totally rewired network) is
not so far above the epidemic threshold.

For the parameter values in figure 6, rewiring the lattice has moved the popula-
tion from being below the epidemic threshold to above the epidemic threshold. For
the lattice (figure 6a), we see that introduction of infection only leads to a minor
outbreak, whereas for the corresponding small-world network (if p is sufficiently
large), or the random graph obtained when all links are rewired, introduction ei-
ther leads to a minor outbreak or a major outbreak. The histograms in figures 6c
and 6d are clearly bimodal, comprising two components: the distribution of minor
outbreaks and the distribution of major outbreaks.

As in our earlier discussion of the stochastic well-mixed model, we see that,
even above the epidemic threshold, introduction of infection does not guarantee
the occurrence of a major outbreak. Looking at the case of the totally rewired
network, we see that a major outbreak is seen in about 74% of the simulations
shown in figure 6d (see also figure 7, panel b). Approximating the rewired network
by a k-neighbor random graph, equations (9) and (10) give the probability of the
occurrence of a major outbreak, following the introduction of a single infective, as
≈ 0.749. Taking the degree distribution of the totally rewired network to be Poisson,
and accounting for the heterogeneity of the totally rewired network, formulae (12)
and (13) give the probability of the occurrence of a major outbreak as ≈ 0.737.
These predicted values are not so different from each other (on account of the
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Figure 6. Outbreak size distributions for the SIR infection pro-
cess on the networks of figure 3, assuming that β = 0.2 and that
each infection lasts exactly one time unit (τ = 1). In each case, the
average connectivity of the network is ten and the network consists
of 1000 individuals. In panel (a), no links are rewired. Panels (b)
and (c) use small-world networks generated from the underlying
1D lattice with per-link rewiring probabilities equal to 0.040 and
0.079. All links are rewired in the network of panel (d). The in-
set in panel (b) shows the corresponding outbreak size distribution
when the network contains 100 000 individuals (with p still equal
to 0.040). Each panel depicts the outcomes of 10000 realizations
of the model, but for clarity the vertical axis is cut off at 2000.
(In each case, the peak corresponding to ten or fewer cases reaches
above this cut-off.)

relatively low heterogeneity of the network’s degree distribution) and are both in
good agreement with the simulation results.

From the histograms of figure 6, we see that increasing the rewiring probability
increases the probability of the occurrence of a major epidemic and increases the
average size of the ensuing outbreak. We also notice that the distribution of the sizes
of the major epidemics becomes less variable as the rewiring probability increases.
Close to the threshold, we see a transition regime in which the distinction between
minor and major outbreaks is less clear: the histogram in figure 6b is less clearly
bimodal than one obtained further above the threshold (for example, figure 6c).
Since the minor outbreaks are of typical size O(1) and the major outbreaks are
of size O(N), this transition regime is less noticeable when N is larger. This is
illustrated in the inset to panel (b), obtained for the same value of p but with a
population size that is one hundred times larger. Comparison between the main
graph of panel (b) and its inset also illustrates that the sizes of the major outbreaks
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are more closely centered around their mean for large population sizes (see [3] for
a more complete discussion of this effect).
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Figure 7. Panel (a): Dependence of the average fraction of
nodes that ever become infected (main graph) and the average
number of nodes that ever become infected (inset graph), follow-
ing the introduction of a single infective individual, on the rewiring
probability in the Watts-Strogatz small-world network algorithm.
Networks are generated as in figure 3, with population sizes of
N = 1000 (solid line with squares), N = 10000 (solid line with
filled triangles) or N = 100000 (dashed line with circles). Infec-
tion parameters are β = 0.2 and τ = 1. Averages were taken over
10 000 realizations for N = 1000 and N = 10000, but over 1000
realizations for N = 100000. Panel (b) depicts, in terms of the
rewiring probability, three quantities: the average outbreak size
(solid curve with squares), the probability of the occurrence of a
major outbreak (dashed curve) and the average size of a major
outbreak, if one occurs (circles). All curves in panel (b) are cal-
culated using the simulations shown in panel (a) for N = 10000.
Notice that the ‘average size’ curve is calculated by averaging over
all realizations of the model (regardless of whether they involved
a minor or a major outbreak), and thus corresponds to one of the
curves in panel (a).

Figure 7a clearly illustrates the threshold behavior of the model as the rewiring
probability is increased. Also visible is the O(N) behavior of the sizes of the
major outbreaks, with the average fraction of the population ever infected above
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threshold being independent of N (main graph). The O(1) behavior of the sizes
of minor outbreaks is also clear, with the average number of people ever infected
below threshold being independent of N (inset graph).

Figure 7b depicts, in terms of the rewiring parameter, the average outbreak size
(calculated across all realizations, regardless of whether a minor or major outbreak
occurred), the probability of the occurrence of a major outbreak and the size of
the ensuing major outbreak, if it occurs. (Put another way, the last quantity is
the average outbreak size conditional on the occurrence of a major outbreak.) As
expected, the probability of the occurrence of a major outbreak is, within the
accuracy of the simulations, equal to the (fractional) size of a major outbreak for
values of p above threshold. The transition region around the threshold imposes
some difficulties in the estimation of the probability and size of major outbreaks in
figure 7b. Since threshold behavior is sharper for larger values of N , as explained in
the discussion of figure 6b and its inset, these difficulties are mitigated by employing
larger population sizes (hence the use of N = 10000 in figure 7b rather than the
N = 1000 of figure 6).

5. Dynamics in Endemic Settings

The assumptions of lifelong immunity and the neglect of demographic pro-
cesses are unrealistic for many infections. In many instances, replenishment of the
susceptible population, either with the waning of immunity or the birth of new
susceptibles, has a major impact on the dynamics of the infection. Most impor-
tantly, this process can lead to the establishment of an equilibrium level of infection
in which the rate at which susceptibles are infected (or die) balances the rate at
which susceptibles are recruited and the rate at which individuals become infected
balances the rate at which they recover (or die) [1, 15].

Modeling demographic processes requires the removal of individuals from the
network upon their death and the insertion of individuals as they are born. Unless
one simply replaces a dying individual by a newborn, this raises questions as to
where newborns should be placed in the network. From the viewpoint of network
settings, therefore, it is much easier to model the replenishment of susceptibles by
allowing immunity to wane. The SIRS model assumes that recovered individuals
lose their immunity at some point. A limiting case of the SIRS model is the SIS
model, in which the duration of immunity is simply set equal to zero: individuals
recover to a susceptible state. On the other hand, if the duration of immunity is
allowed to tend to infinity, individuals never recover and the SIRS model approaches
the SIR model.

For simple well-mixed models, there are many similarities between the behav-
ior of SIR and either SIS or SIRS infection processes. Most notably, the threshold
concept carries over to these processes, with the basic reproductive number de-
termining a disease invasion condition: introduction of infection can lead to an
outbreak when the basic reproductive number is greater than one. In addition,
the same condition ensures the existence and stability of an endemic equilibrium
(i.e. one with a positive prevalence of infection) of the system [1, 15, 44]. In
other words, the R0 = 1 condition is also a disease persistence threshold. For many
models, the expression for R0 is identical in both epidemic (e.g. SIR) and endemic
(e.g. SIRS) settings.
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In non well-mixed models, the invasion and persistence thresholds need not
be identical: one scenario under which this can arise involves the occurrence of a
so-called “backwards bifurcation” at R0 = 1, and has been the subject of many
studies [12, 18].

The stability of the endemic equilibrium has been of considerable interest: in
simple settings, the existence of a (positive) endemic equilibrium guarantees its
stability. This is not always the case, however, and for many models, the endemic
equilibrium can become unstable via a Hopf bifurcation, leading to stable oscilla-
tions in the prevalence of infection [25].

In stochastic settings, random fluctuations prevent the system from settling
into an equilibrium. If these fluctuations are large enough, then the infection can
go extinct: if the number of infectives falls close to zero, then it is possible for all
of them to recover before passing on the infection. This phenomenon is known as
(endemic) fade-out [7]: stochasticity means that an infection may not persist even
though its basic reproductive number is large compared to one. This is an important
aspect of the dynamics of many infections, such as measles, in all but the largest-
sized cities. In spatial settings, fade-out leads to local extinction of infection, but
need not link to global extinction of infection if outbreaks in different locations are
desynchronized [10, 41]. Indeed, movement of infectious individuals means that
infection can be reintroduced into a region where it previously underwent fade-out.
Consequently, the population-level persistence of infection depends in an important
way on the synchrony of outbreaks across the population [10, 27].

Much of the discussion of the impact of spatial structure on the dynamics and
persistence of infection has been framed in terms of metapopulation models. These
questions have, however, also been investigated within the small-world framework
[31, 58].

Kuperman and Abramson [31] investigated the dynamics of an SIRS process
on a small-world network. For small values of the Watts-Strogatz rewiring param-
eter, p, they found that the population-level prevalence exhibited small stochastic
fluctuations around an endemic equilibrium. Quite different behavior was seen for
larger values of the rewiring parameter, however, with the prevalence undergoing
large amplitude oscillations. These oscillations occurred on the timescale of the
duration of immunity. The change in behavior was accompanied by a change in the
synchrony of outbreaks between different regions of their population.

An intuitive explanation of these results can be given in terms of the mixing
pattern of the population and the resulting level of synchrony. For small values
of p, the mixing is mainly local, and so oscillatory behaviors in different locales
occur in an asynchronous fashion. With little synchrony between outbreaks in
different regions of the population, the population level prevalence undergoes small
amplitude fluctuations about some level: the local oscillations are averaged out at
the level of the whole population (see also [17]). When p is large, mixing is global
in nature and so there is a greater tendency for synchrony between outbreaks in
different parts of the population. Indeed, the oscillations in prevalence are predicted
by a mean-field (well-mixed) model for the system [25].

Verdasca and co-workers [58] considered the persistence and synchrony of out-
breaks of an infection such as measles on small-world networks using what they
described as an SIR process with demography. (Actually, their model employed an
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SIRS process since they modeled births by replacing recovered individuals by sus-
ceptibles.) Spatial correlations were found to enhance the stochastic fluctuations
around the endemic equilibrium, with smaller fluctuations in the well-mixed case
(p = 1) than when the network was close to a lattice (p ≈ 0).

As noted by Verdasca et al., their study and that of Kuperman and Abramson
make apparently conflicting predictions regarding the impact of spatial structure on
oscillatory behavior. Although some aspects of this conflict are not fully resolved,
Verdasca et al. do point out that the two studies examine quite different parameter
regimes. Kuperman and Abramson’s study assumes that immunity lasts for a time
that is comparable to the duration of infection; the resulting oscillations are on a
similar timescale. For Verdasca et al., immunity is lifelong, while infection lasts for
at most a few weeks; the resulting oscillations are on an intermediate timescale,
being on the order of one to three years. Kuperman and Abramson point out that
oscillations are not seen in their model when there is a marked difference between
the durations of infectiousness and immunity.

The conventional wisdom in the literature on the metapopulation dynamics of
measles is that spatial structure enhances the persistence of infection [10, 27] since
outbreak asynchrony can allow global persistence even in the face of frequent local
extinction. Persistence is much less likely in a well-mixed population than in a more
structured population. Verdasca et al., however, described an abrupt transition in
the persistence of infection as the rewiring probability, p, was increased. In their
small-world model, persistence was much more likely to occur in networks that
were close to well-mixed. They described this transition in terms of a percolation
threshold and so it appears to be related to the increase in R0 that accompanies
higher values of p, as described in the previous sections. Since it is well-known
that the invasion threshold is exceeded for measles— indeed with an R0 of about
15, measles is highly infectious— this observation of Verdasca et al. does not,
unfortunately, address the main question of interest for measles, namely the impact
of spatial structure in countering the endemic fade-out effect.

Questions of dynamics and persistence have been considered in other network
settings; these results shed some light on the above studies of small-world settings.
Morris [40], discussed by Rand [53], found that the stable endemic equilibrium
of the SIR model gave way to limit cycle behavior on clustered networks as the
quantity φ increased through a critical value. We remark that the direction in
which this change occurs is in agreement with the results of Verdasca et al. Keeling
and co-workers [29] demonstrated that clustering in a network could enhance the
persistence of an endemic infection, a finding that is in agreement with the results
of metapopulation approaches.

6. Discussion

Network models provide a flexible framework within which the impact of popu-
lation structure on the transmission dynamics of infections can be studied. On one
level, they provide a research tool that can be used to investigate the relationship
between epidemiological interactions that are described in terms of individuals and
their behavior, and the resulting population-level patterns of disease transmission.
In this way, network models can be used to better understand the assumptions
that underlie many population-level epidemiological models. On another level, net-
work models are being increasingly used as a practical tool, to aid in the analysis
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of epidemiological data (see [35]), to provide ever more realistic models for real-
world populations (see [20]) and to aid in the design of control strategies (see
[21, 35, 36, 52])

Although we have framed our discussion within the context of the spatial struc-
ture of populations, the network need not correspond to geographic space but rather
to some more general notion of the social space of a population. For instance, mix-
ing might be age dependent: for instance, children of the same age are more likely
to spend time together at school [29].

Heterogeneity in the connectivity distribution is an important aspect of the
structure of many populations, but is something we have not discussed here in
detail. As mentioned above, the degree distributions of the Watts-Strogatz small-
world networks exhibit only low levels of heterogeneity: this class of networks is,
therefore, a poor model for many real world populations. It has long been realized,
for instance, that sexual partnership networks exhibit extreme heterogeneity (see,
for example, [1]), that this heterogeneity has a major impact on the spread of infec-
tion and that models that ignore this heterogeneity will provide poor descriptions
of reality.

Much of the discussion of network models has been within the context of dis-
ease invasion. This setting has long been favored by modelers since invasion is
the setting within which mathematical analysis of epidemic models is often easiest.
More recently, real world events have also focused attention on disease invasion:
concerns about bioterrorism have fueled the development of models that describe
the deliberate introduction of infectious diseases into urban and other settings. Net-
work approaches have provided a natural framework for such models [13, 20]. For
many infections, however, the most interesting epidemiological questions concern
endemic settings. Although there is an ever growing literature concerning network
approaches for endemic infections, much work remains to be done here.
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