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Objectives

This report attempts to apply the methods of actuarial science to
student progression in colleges and universities. It considers several
possible models of progression expressed in matrix form, and fits
these models to statewide undergraduate enrollment data obtained
from the Integrated Postsecondary Education Data System. The best
model as determined by the Akaike Information Criterion is used to
create life tables.

Introduction

A seminal model for ecological population growth is known as the Leslie
Model. In this model, females are grouped into age segments of equal size.
The number of females in each age group ¢ at iteration n is denoted x;(n),
with the vector of these values denoted x(n). Each group ¢ is assumed to
have a fixed probability that a member just entering the group will die
before leaving the group, p;, and a fixed average number of children per
female while in that age group, b;. These assumptions give the following
model:
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These parameters are subject to the constraints 0 < p; < 1and 0 < b;. It
turns out that, under the assumption that 47 € N with b; > 0 and

bj+1 > 0, the proportions of the total population in each age group
approach constants as n — oo. This set of proportions at the limit is
referred to as the stable age distribution.

The Leslie Model, though simple, manages to capture some of the basic
features of ecological populations. We attempt to apply this model to
student progression, grouping students by year of study rather than by
age as in ecology, and having students drop out rather than having
members of the population die. However, modeling student populations
requires different assumptions, because there is no clear analogue of
childbirth for undergraduate populations. One way to resolve this is to
add a vector representing immigrants to the system (in other words, new
students), which may or may not have nonzero entries after the first entry.
The Leslie Model and the concept of an immigration vector led us to
propose four models of student population dynamics, which we compare
and analyze.

Data

Our data come from the Integrated Postsecondary Education Data
System published by the National Center for Education Statistics. From
this database, we were able to obtain statewide data by year on the
number of first-year, second-year, third-year, and fourth-or-higher-year
students at each school. We were also able to obtain the number of
first-time freshmen at each school, which we denote u(n) in the year n.
We considered only Title IX compliant public schools. Grouping these
schools by state (including the District of Columbia) gave us our dataset.

Models
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p, o, and B are parameters. Model 1 closely resembles the Leslie model.
However, instead of computing births from x(n — 1), new individuals enter
each age group via an immigration vector with four entries that are linear
in time. New individuals can enter in any group, rather than just the first
oroup as in the Leslie model. Generally, we observed that populations
approach a stable age distribution in Model 1, as in the Leslie Model.
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Model 2 is different from Model 1 in two ways:

@ Model 2 assumes that data on freshman enrollment are available. Many

data sets do provide freshman enrollment, including those we studied.

@ Model 2 has nonzero entries on the main diagonal. This is to account

for students who remain in the same classification for multiple years.
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Model 3 is a modification of Model 2 in which we assume that the fourth
year is the only year that can be repeated. The motivation for this is that
the data sets used group together students who have been at school for
four years or longer rather than providing figures for the number of
students that have been in school for four, five, or six years.

Model 4
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Model 4 is a hybrid of Model 1 and Model 3, which gives the model more
control over what happens in the earlier years than Model 3.

Figu re 1: A visual representation of student progression in Model 2.
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Methods

We formulated four matrix models of student progression. Using the
IPEDS data, we performed least-squares fits to each model, and
compared the results using the Akaike Information Criterion. The Akaike
Information Criterion is a metric that provides information about the
relative suitability of models to data, though it makes no statement on the
absolute suitability of any of the models. The AIC value for a model is

AIC = 2k — 2In(L) (6)

where £ is the number of parameters in the model and L is the
least-squares sum for the best fit. Models with smaller AIC values are, by
this metric, preferable to models with larger AIC values.

After computing the AIC values to determine the best-suited model, we
performed the Durbin-Watson test to check for autocorrelation in the
residuals. The Durbin-Watson statistic is the quantity
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where r; is the residual and NV is the number of observations. Sufficiently
small p is evidence of positive correlation between consecutive residuals;
conversely, sufficiently large p is evidence of negative correlation between
consecutive residuals. If neither is the case, there is insuflicient evidence
to disprove the null hypothesis.

Our final step was to compute means and standard errors using the
bootstrapping methods. We will omit the details here, but bootstrapping
consists of generating a sample of 'similar" datasets based on the actual
datasets. We performed least-squares fits to the best-suited model on the
samples of similar datasets and found means and standard errors from
these fits. To visualize the final results, we plotted clouds of best-fit
curves given by the bootstrapped fits.

Results

Applying the AIC to the dataset for each state, we found that Model 2
(equation 3) is the most suitable for each of the 51 datasets, and that
Model 3 (equation 4) is the second most suitable in terms of average AIC
score across the 51 datasets. In addition to the clouds of best-fit curves,
we also obtained point estimates for each state, given in the
supplementary materials. Below are best-fit clouds for two states, one
with a very tight cloud and one with a very widespread cloud.

Flgu re 2 Best-fit clouds for each student classification in lllinois and Indiana.

Illinois Illinois Indiana Indiana

15000
|

-
. -
ssags*? ....

homores
0 5000 10000 15000
1 1 ]
mel
00
homores
00

0 5000 10000
1 1
2000
2000

500
(=]
w
500

......

uniors
10000 15000

]
10000 15000
1 1
L]

.....
..............

.......

ooooooooo

be:
5000
Number of seniors
5000
be

Flgu re 3: Best-fit curve for total students in North Dakota
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Conclusions

In most cases, the clouds of best-fit curves are reasonably tight. Also, as
seen in the above example, the total number of students matches up very
well with the model’s totals (this holds true in general, not just for North
Dakota). However, looking at the actual values, many parameter
estimates almost certainly do not reflect reality - for example, the results
estimate that 53% of Georgia students repeat their first year. It seems
likely that we either made an incorrect assumption or investigated no
suitable models.

One possible issue in our investigation is the way in which we applied the
AIC. Models 2 and 3 make use of freshman enrollment data while Models
1 and 4 do not, so Models 2 and 3 have an inherent advantage in the AIC
comparison. After all, Models 1 and 4 spend eight variables predicting
values that Models 2 and 3 get for free. Models 2 and 3 do in fact have
the best average AIC scores. The fact that our model requires this data
also means that we cannot forecast overall enrollment without first
forecasting freshman enrollment. This disadvantage of Models 2 and 3 is
not represented in their AIC scores.
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