
Figure 8: 
Histogram of the 
final number of 
Cooperators in the 
network against 
frequency. This is 
for the Watts-
Strogatz network 
with p =1, where 
average degree is 
4, and this 
corresponds to 
Figure 7.  

 

Introduction 
Prisoner’s Dilemma is a game theoretical model that describes interactions between two 
strategies: Cooperation and Defection. Cooperator’s are altruistic individuals who help 
others by giving a benefit (b) with no guarantee that they will receive any benefit in return, 
which is the risk or cost (c) that they pay in every interaction. Defectors play the selfish 
strategy and only take from giving Cooperators, while not reciprocating any benefit and 
therefore not having to pay any cost. In a homogeneous model, where every individual 
has equal probability of interacting with every other individual, we see that Defectors have 
a great advantage over the Cooperators because they never have to pay any cost. The 
payoff matrix for the two player game is as follows:  A =         C      D                                        
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In a spatial model, individuals may interact with more than one other individual in a 
single time step and occur between neighbors. In a network, we let nodes represent 
individual players and edges between nodes represent neighbors that have the potential 
to interact in each time step. Therefore, when taking into account space, we let (i) 
represent the number of Cooperating neighbors, while (k) is the total number of 
neighbors. Then, the payoff of a Cooperating node is bi-ck and the payoff of a defecting 
node is bi. This can be written as payoff of node i at time t:                                            

where xi =      for Cooperators and xi =      for Defectors 

 

 A is the payoff matrix between two players, shown above and Ω is the set of neighbors 
of node i. Fitness is then calculated by 1-w+wP(i,t), where w is intensity of selection.  

Watts-Strogatz networks are networks that start out with the same degree for every 
node, which initially creates a ring. (p) represents the rewiring probability, meaning that 
in each time step , the actual network is updated, an edge is chosen at random to be 
rewired to a new node with probability (p). With p=0, we have a ring and as p 
approaches 1, the graph tends toward and Erdos-Reyni graph. This creates small 
clustered communities, while maintaining small average path length. Using algorithms 
written in Matlab, we can create a small world network, vary the rewiring probability, 
simulating prisoner’s dilemma on the network, and run the implementation of prisoner’s 
dilemma on any adjacency matrix obtained from real data. 

Abstract 
Prisoner’s Dilemma is a game theoretical model that considers two opposing 
strategies: Cooperation and Defection. Cooperators play an altruistic strategy, 
while defectors play a selfish strategy. In a two-player game and in a 
homogeneous population, we see defectors always winning or invading the 
population because they never have to pay any cost, which causes Defectors to 
have a higher payoff and a higher fitness, Figure 1. However, biologically, we see 
the Cooperation strategy persisting in small clustered communities because 
individuals realize that helping others increases the probability that they will 
receive help from those individuals later, which in turn should yield a higher payoff. 
Here we investigate the effects space has on the Prisoner’s dilemma game by 
simulating it on the Watts-Strogatz modeled networks and investing networks 
obtained from real data, namely the Facebook friendship data obtained from the 
California Institute of Technology.  
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This model is an evolutionary model, which means it changes through time. When 
updating this game, we use two methods of updating: death-birth updating and imitation. 
Death-birth updating kills a node or player in every time step and the nodes connected to 
it compete for the empty site proportional to their fitness. Fitness is calculated by 1-w+wp 
where w is intensity of selection (here w=1 always) and p is the payoff of the node. The 
payoff of each node is calculated subjective to the strategy of the node. Cooperators 
have a payoff  bi-ck, where (i) is the number of cooperating neighbors and (k) is the 
degree of the node. Similarly, the payoff of a defector is bi. Figure 1 illustrates a 
hypothetical example of this updating. Yellow nodes represent cooperators, while black 
nodes represent defectors. The ? Node is the node chosen at random to die, and nodes 
C and D are competing for the empty site in the next time step. For the following 
simulations, a Watts-Strogatz network with rewiring probability equal to 0 (a ring) was 
used to play Prisoner’s Dilemma based on this rule. For the imitation updating, a node is 
chosen at random to become active, then one of the neighboring nodes of the active 
node is chosen at random and the active node simply takes the strategy of that node.  
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Figure 2: Illustrates 
an example of  
Death-Birth 
updating. Node (?) 
is the empty  
site, while C and D 
are competing to 
take  
over proportional to 
their fitness.  
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Figure 3: Plots the 
number of 
Cooperators in the 
network against 
time. The 
parameters are b = 
0.6 and c = 0.3. 
Each color 
represents a 
different realization 
(1,000).There are 
20,000 time steps. 
This is for the 
Watts-Strogatz 
network with p = 0, 
where average 
degree is 4.   

 

Well-Mixed: Homogeneous 

Figure 7: Plots the 
number of 
Cooperators in the 
network against 
time.The parameters 
are b = 0.6 and c = 
0.3.  Each color 
represents a different 
realization (1,000), 
each having 20,000 
time steps.. This is 
for the Watts-
Strogatz network 
with p =1, where 
average degree is 4.   

 

Watts-Strogatz p = 1: Death-Birth Updating 

Watts-Strogatz P = 1: Imitation Updating 

Cal-Tech: Death-Birth Updating 

Cal-Tech: Imitation Updating 
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Figure 9: Plots the 
number of Cooperators 
in the network against 
time. The parameters 
are b = 0.6 and c = 0.3.  
Each color represents a 
different realization 
(1,000),each having 
20,000 time steps. This 
is for the Watts-Strogatz 
network with p =1, 
where average degree 
is 4.   

 

Figure 13: Plots the 
number of Cooperators 
in the network against 
time. The parameters 
are b = 0.6 and c = 0.3. 
Each color represents 
a different realization 
(1,000), where each 
realization has 20,000 
time steps. This is for 
the Caltech data using 
imitation updating.  

 

Watts-Strogatz p = 0: Imitation Updating 

Figure 5: Plots the 
number of Cooperators 
in the network against 
time. The parameters 
are b = 0.6 and c = 0.3.  
Each color represents a 
different realization 
(1,000), each having 
20,000 time steps. This 
is for the Watts-Strogatz 
network with p =0, 
where average degree 
is 4.   

 

Figure 11: Plots the 
number of Cooperators 
in the network against 
time. The parameters 
are b = 0.6 and c = 0.3.  
Each color represents 
a different realization 
(1,000), with 20,000 
time steps each. This 
is from a network 
created from the 
facebook social 
network at Caltec.  

 

Watts-Strogatz p = 1: Death-Birth Updating 

Watts-Strogatz p = 0: Death-Birth Updating 

Watts-Strogatz p = 0: Death-Birth Updating 

Figure 4: Histogram of 
the final number of 
Cooperators in the 
network against 
frequency. This is for 
the Watts-Strogatz 
network with p =0, 
where average degree 
is 4 and corresponds to 
Figure 3. 

 

Cal-Tech: Death-Birth Updating 

Figure 12: Histogram 
of the final number of 
Cooperators in the 
network against 
frequency. This is for 
the Caltech data and 
corresponds to Figure 
11.   

 

Conclusion 
In a well-mixed population, Cooperators go extinct in relatively few times steps. 
When taking into account the affect space has on a population, we see that b/c > 
<k> is a necessary condition for Cooperators to prevail. Playing Prisoner’s Dilemma 
on a graph generated from a network created with real data gives us insight as to 
why altruistic behavior persists throughout a population, even though the strategy is 
seemingly not beneficial to the individual. We see in both the Watts-Strogatz 
networks and Caltch data that Cooperators either completely invade or go extinct. 
However, there are a few cases where they co-exist in the population. In the 
imitation updating, since fitness has no say in the mimicking and everything is left to 
chance, it makes sense to see Cooperators dying out. Thus, the network structure 
and updating methods both have drastic effects on what seems to be  fittest 
strategy in the network.  
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