Prisoner's Dilemma Implementation on Watts Strogatz Networks and Real Networks
Sharon Cameron and Dr. Ariel Cintron-Arias
Department of Mathematics and Statistics
East Tennessee State University

Abstract

Prisoner's Dilemma is a game theoretical model that considers two opposing
trrategies: Cooperation and Defection. Cooperators play an altruistic strateg while defectors play a selfish strategy. In a two-player game and in a omogeneous population, we see defectors always winning or invading the have a higher payoff and a higher fitess, Figure 1 . However, biologically, we se e Cooperation strategy persisting in small clustered communities because
 Here we investigate the effects space has on the Prisoner's diiemma game by
simulating it on the Watts-Strogatz modeled networks and investing networks simulating it on the Watts-Strogatz modeled networks and investing eeworks California Institute of Technology.

ntroduction
Prisoner's Diemma is a game theoretical model that describes interactions between two
 others by giving a benefitt (b) with no guarantee that they will receive any benefit in return
which is the risk or cost (c) that they pay in every interaction Defecetors play the selfish

 payoff matrix for the two player game is as follows: $\left.\mathrm{A}=\begin{array}{cc}\mathrm{C} & \mathrm{D} \\ \mathrm{C} \\ \hline-c & -c \\ b & \\ b\end{array}\right]$

 neighbors. Then, the payoff of a cooperating node is ibi-ck and the payoff of a defecting
node is b This where $x_{i}=[1]$ for Cooperators and $x_{i}=\left[\eta\right.$ for Defectors $: P(i, t)=\sum x_{i}^{T} A x$ A is the payoff matrix between two players, shown above and Ω is the set of neighbors A is the payorn matrix between two players, shown above and Ω is the se of neighbors
of node i i Fitness is then calculated by $1-w+w P(i, t)$, where w is intensity of selection. Watts-Strogatz networks are networks that start out with the same degree for every
node, which initially creates a node, which initially creates a ring. (p) represents the reviring probabiilt, meaning tha
in each time step, the actual network is updataed, an edge is chosen at random to be rewired do a new node with probability (p). Witr $p=0$, , we have a ting and as p approaches 1 , the graph tends toward and Erdos-Revnii graph. This sereates small
clustered communties, while maintaing smal average path length. Using algorithms
 simulating prisoners siliemma on the network, and run the
diliemma on any adjicency matrix obtained from real data.

Mode

Watts-Strogatz p=0: Death-Birth Updating

Figure 3: Plots the number of Cooperators in the network against time. The parameters are $b=$ 0.6 and $\mathrm{c}=0.3$. Each color represents a different realization (1,000). There are This is for the Watts-Strogatz network with $p=0$, where average

Watts-Strogatz $p=0$: Death-Birth Updating

Watts-Strogatz $p=0$: Imitation Updating

Watts-Strogatz $p=1$: Death-Birth Updating

Watts-Strogatz P = 1: Imitation Updating
Cal-Tech: Imitation Updating

Acknowledgements

S.Cameron was founded by ETSU Honors College through a Research Discover Student Position.
s. Cameron was funded by Talent Expansion in Quantitative Biology program (NSF-STEP grant number DUE 0525447) to attend a two-day
undergraduate workshop held at the Sta- tistical and Applied Mathematica undergraduate workshop held at the Sta- -isitical and Applied Mathematica
Sciences Institute (SAMSI), October 29-30, 2010. Con- tributions to this
 sponsored by East Tennessee State University Presidential-Gran
E25150, and by SAMSI Working Group Dynamics On Networks.

References

1. A.L.Traud P....Mucha, and M.A. Porter, Soc

SSRN: http:|/ssm.cocomabstract=147076
2. H. Ohtisuki, C. Hauert, . Lieberrana, and M. N. N.
social
3. G Abramsorks, Nature,

