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Abstract 

 There has recently been great interest in modeling the spread of ideas. It has been found that 
epidemiological models can be applied to the spread of ideas through a population, modeling them 
in much the same way as the spread of disease. Applying a subset selection algorithm based on the 
sensitivity matrix, we will calculate the reliability of optimal reduced parameter vectors for which 
estimation is to be sought. It should be noted that this algorithm requires prior knowledge of a 
nominal data set of values for all parameters and constant variances,𝜎0

2, in observations. We will 
also further analyze the sensitivity matrices for the reduced parameter vectors in order to compare 
the magnitude of change in the number of people in a population who adopt an idea due to 
relatively equal changes in each of the parameters. In this way we will assess the influence, over 
time, of several different factors on the dissemination of a scientific idea. 

Introduction 
 In this poster we seek to explore the influence of various factors on the acceptance of an idea. 
It is important to first understand what we mean by “ideas”. While we use the term literally, we also 
use it loosely. An idea can be just that: A thought, a belief, or an opinion. However, an idea can also 
be a technological advancement, such as the use of biodiesel; an unproven theorem in graph theory; 
or even, as here, the preference for a method of diagramming electromagnetic interactions between 
subatomic particles. We focus here on the spread of the use of Feynman diagrams because their 
acceptance is well documented. It is important to note, however, the plethora of possible 
applications. 
  We will begin by applying a parameter selection algorithm to a simple epidemiological model 
that explains the spread of ideas through a population.  This parameter selection algorithm will both 
identify the optimal parameter vector subset for estimation and quantify the uncertainty associated 
with each possible parameter vector subset. 
 Once we have reliable estimation for the parameters we choose to estimate, we will  analyze 
their corresponding sensitivity matrices. In this way, we will explore the influence of each of those 
parameters on the infected class of the population. 

Mathematical Model 
We propose the following model, with the following state variables and system parameters: 

This model implies the following non-linear series of differential equations: 
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The 𝑛 × 𝑝 matrix 𝜒𝑛(𝜃0) is known as the sensitivity matrix of the system and is defined by: 

𝜒𝑖𝑗
𝑛 𝜃0 = 

𝜕𝐼(𝑡𝑖 , 𝜃)

𝜕𝜃𝑗
 , 1 ≤ 𝑖 ≤ 𝑛 , 1 ≤ 𝑗 ≤ 𝑝 

If we define 𝜃 = (𝑆0, 𝐸0, 𝐼0, Λ, 𝜇, 𝜖, 𝛽, 𝜌, 𝑞) and 𝑋 = 𝑥1, 𝑥2, 𝑥3 = (𝑆, 𝐸, 𝐼), then numerical values of 𝜒𝑛(𝜃) 
can be readily calculated for a given 𝜃 by solving 
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from 𝑡 = 𝑡0 to 𝑡 = 𝑡𝑛.  
Parameter Selection Algorithm 

 It is standard practice to reduce the number of parameters in a statistical model. For example, say we 
have a model with 𝜃 = (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5). If literature suggests reasonable nominal values, a and b, for 𝜃1 
and 𝜃4, then we can set 𝜃1 = 𝑎 and 𝜃4 = 𝑏 leaving only the parameters 𝜃2, 𝜃3, 𝜃5  to be estimated. We 
would call the three remaining parameters the “active parameters.” In more general terms, we would say 

that we are interested in all vectors with 3 active parameters from a 5-vector, for which there are 5
3

= 10 

possible choices. 
 The parameter selection algorithm used here can be thought of as doing three things:  

1. It generates all possible reduced parameter vectors. 
2. It discards all vectors for which 𝜒 is rank-deficient. 
3. It calculates “selection scores” 𝛼(𝜃) as follows. 

 
To calculate the selection scores we will first find the covariance matrix Σ for a given parameter vector 𝜃: 

Σ 𝜃 = 𝜎0
2 𝜒 𝜃 𝑇𝜒 𝜃 −1 

Next we will define a vector 𝑣, analogous to a vector of coefficients of variation: 

𝑣𝑖 𝜃 =
Σ(𝜃) 𝑖𝑖

𝜃𝑖
 

To determine the selection score, we simply take the norm of that vector: 
𝛼 𝜃 = 𝑣(𝜃)   

 
 Analysis of the 𝜒 Sensitivity Matrix 

 In order to better understand the influence of each parameter on the number of “Idea Adopters”, I, we 
will analyze the 𝜒 sensitivity matrix. For each active parameter there is a corresponding column of the 
sensitivity matrix that represents the instantaneous rate of change in the infected population I with respect 
to that parameter, as a function of time. We say that, at a given time, one parameter is more “influential” 
than another if, at that time, a change in that parameter corresponds to a larger change in the infected 
population than an equal change in another parameter. 

Results 
 Below is a table of the smallest selection scores for each possible number of active parameters. 

Summary 
 We have applied a parameter selection algorithm to an epidemiological model designed to 
model the spread of ideas through a population. We have quantified the uncertainty inherent in 
each active parameter vector and, based on that, selected both the optimal reduction sizes and the 
parameters to be estimated for a reduced parameter vector of given length. We have further 
analyzed the sensitivity matrices for each of these reduced parameter vectors, and through that 
analysis quantified not only the rate of change in the infected population due to a given parameter 
at a given time, but also standardized the sensitivity matrices in order to more meaningfully 
compare each parameter’s influence on the infected population over time. 
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 Clearly the uncertainty inherent in estimating more than four parameters precludes the use of an 
active parameter vector so large. For the sake of brevity, we will proceed to further analyze only active 
parameter vectors of length 4. 

 First we will plot 𝐼(𝑡, 𝜃 𝑂𝐿𝑆), the “curve of best fit” for 4 active parameters. 

 We now plot the 𝜒 sensitivity matrices for the first and second “best” choices for active 
parameter vectors of length 4, along with some statistics associated with the parameters. 

 # of active parameters  1  2  3  4 5  6  7  8   9 

 smallest possible α(θ) 0.0431  0.1774   0.3306  1.0105 8.4530   18.7093 47.4071   114.2555  327.3306 

Variable / 
Parameter 

Definition 

S  Susceptibles 

E  Idea Apprentices 

I  Idea Adopters 

N  S+E+I 

Λ   Recruitment Rate 

 1/μ  Average Lifetime of the Idea 

 ϵ  Rate of Individual Progression to Adoption 

 β  Per-capita S-I Contact Rate 

 ρ  Per-capita E-I Contact Rate 

 q  S→I Transition Probability Given Contact With Adopters 

(1-q)   S→E Transition Probability Given Contact With Adopters 

  𝑆0  𝐸0  𝐼0   𝛽 ρ  𝜖  𝑞  Λ  𝜇  

Nominal Value     0.1   2 2.36 0.1   0.039 

Estimate 30.4 10.6   2.34       12.5   

Standard Error 4.1 0.933   0.275       0.935   

Coefficient of Variation 0.135 0.0877   0.118       0.0746   

  𝑆0  𝐸0  𝐼0   𝛽 ρ  𝜖  𝑞  Λ  𝜇  

Nominal Value     0.1   2 2.36 0.1  12.1 

Estimate 30.4 10.6   2.33        0.0322 

Standard Error 3.4 0.932   0.238        0.0106 

Coefficient of Variation 0.112 0.0882   0.102        0.33 

 In Figure 3 we notice that, at time 𝑡 = 51, a single unit increase in 𝜇 corresponds to a greater 
than 20 unit decrease in the size of the infected population, while a single unit increase in 𝛽 (the 
next most influential parameter) corresponds to a less than 10 unit increase in the size of the 
infected population. This is largely because a single unit increase in 𝜇 is much more meaningful 
than a single unit increase in 𝛽. In order to more meaningfully compare the influence of the 
parameters, we define a standardized sensitivity matrix 𝜁( 𝜃𝑂𝐿𝑆) such that changes in parameter 
values as well as corresponding changes in the size of the infected population are measured in 
percent increases and decreases. The standardized sensitivity matrix is calculated as follows: 

𝜁𝑖𝑗
𝑛 𝜃𝑂𝐿𝑆 =
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  1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑝. 

 We now plot the 𝜁 standardized sensitivity matrices for the first and second best choices for 
active parameter vectors of length 4. 

Statistical Model for the Observation Process 
 We assume that each of the n longitudinal observations is a realization of 𝐼 𝑡, 𝜃0  where 𝜃0 
is the theoretical true parameter vector and that each realization is affected by random deviations 
from the true underlying process. Thus the statistical model is given by 

𝑌𝑖 = 𝐼 𝑡𝑖 , 𝜃0 + 𝜖𝑖 𝑓𝑜𝑟 𝑖 = 1,… , 𝑛 .  
We assume that the errors, 𝜖𝑖, have a mean of zero, some common, finite variance, and that they 
are independent of each other.  
 Where 𝜃𝑂𝐿𝑆
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