2.1 Displacement

2.2 Velocity

1. **BIO** The speed of a nerve impulse in the human body is about 100 m/s. If you accidentally stub your toe in the dark, estimate the time it takes the nerve impulse to travel to your brain.

2. Light travels at a speed of about 3×10^8 m/s. (a) How many miles does a pulse of light travel in a time interval of 0.1 s, which is about the blink of an eye? (b) Compare this distance to the diameter of Earth.

3. A person travels by car from one city to another with different constant speeds between pairs of cities. She drives for 30.0 min at 80.0 km/h, 12.0 min at 100 km/h, and 45.0 min at 40.0 km/h and spends 15.0 min eating lunch and buying gas. (a) Determine the average speed for the trip. (b) Determine the distance between the initial and final cities along the route.

4. The current indoor world record time in the 200-m race is 19.92 s, held by Frank Fredericks of Namibia (1996), while the indoor record time in the one-mile race is 228.5 s, held by Hicham El Guerrouj of Morocco (1997). Find the mean speed in meters per second corresponding to these record times for (a) the 200-m event and (b) the one-mile event.

5. Two boats start together and race across a 60-km-wide lake and back. Boat A goes across at 60 km/h and returns at 60 km/h. Boat B goes across at 30 km/h, and its crew, realizing how far behind it is getting, returns at 90 km/h. Turnaround times are negligible, and the boat that completes the round trip first wins. (a) Which boat wins and by how much? (Or is it a tie?) (b) What is the average velocity of the winning boat?

6. A graph of position versus time for a certain particle moving along the x-axis is shown in Figure P2.6. Find the average velocity in the time intervals from (a) 0 to 2.00 s, (b) 0 to 4.00 s, (c) 2.00 s to 4.00 s, (d) 4.00 s to 7.00 s, and (e) 0 to 8.00 s.

[Figure P2.6 Problems 6 and 17]

7. A motorist drives north for 35.0 minutes at 85.0 km/h and then stops for 15.0 minutes. He then continues north, traveling 130 km in 2.00 h. (a) What is his total displacement? (b) What is his average velocity?

8. A tennis player moves in a straight-line path as shown in Figure P2.8. Find her average velocity in the time intervals from (a) 0 to 1.0 s, (b) 0 to 4.0 s, (c) 1.0 s to 5.0 s, and (d) 0 to 5.0 s.

[Figure P2.8]

9. A jet plane has a takeoff speed of $v_{ty} = 75$ m/s and can move along the runway at an average acceleration of 1.3 m/s2. If the length of the runway is 2.5 km, will the plane be able to use this runway safely? Defend your answer.

10. Two cars travel in the same direction along a straight highway, one at a constant speed of 55 mi/h and the other at 70 mi/h. (a) Assuming they start at the same point, how much sooner does the faster car arrive at a destination 10 mi away? (b) How far must the faster car travel before it has a 15-min lead on the slower car?

11. The cheetah can reach a top speed of 114 km/h (71 mi/h). While chasing its prey in a short sprint, a cheetah starts from rest and runs 45 m in a straight line, reaching a final speed of 72 km/h. (a) Determine the cheetah’s average acceleration during the short sprint, and (b) find its displacement at $t = 3.5$ s.

12. An athlete swims the length L of a pool in a time t_1 and makes the return trip to the starting position in a time t_2. If she is swimming initially in the positive x-direction, determine her average velocities symbolically in (a) the first half of the swim, (b) the second half of the swim, and (c) the round trip. (d) What is her average speed for the round trip?

13. A person takes a trip, driving with a constant speed of 89.5 km/h, except for a 22.0-min rest stop. If the person’s average speed is 77.8 km/h, (a) how much time is spent on the trip and (b) how far does the person travel?

14. A tortoise can run with a speed of 0.10 m/s, and a hare can run 20 times as fast. In a race, they both start at the same time, but the hare stops to rest for 2.0 minutes. The tortoise wins by a shell (20 cm). (a) How long does the race take? (b) What is the length of the race?

15. To qualify for the finals in a racing event, a race car must achieve an average speed of 250 km/h on a track with a total length of 1,600 m. If a particular car covers the first half of the track at an average speed of 230 km/h, what minimum average speed must it have in the second half of the event in order to qualify?

16. One athlete in a race running on a long, straight track with a constant speed v_1 is a distance d behind a second athlete running with a constant speed v_2. (a) Under what circumstances is the first athlete able to overtake the second athlete? (b) Find the time t it takes the first athlete to overtake the second athlete, in terms of d, v_1, and v_2. (c) At what minimum distance d_0 from the leading athlete must the finish line be located so that the trailing athlete can at least tie for first place? Express d_0 in terms of d, v_1, and v_2 by using the result of part (b).

17. A graph of position versus time for a certain particle moving along the x-axis is shown in Figure P2.6. Find the instantaneous velocity at the instants (a) $t = 1.00$ s, (b) $t = 3.00$ s, (c) $t = 4.50$ s, and (d) $t = 7.50$ s.

18. A race car moves such that its position fits the relationship $x = (5.0 \text{ m/s})t + (0.75 \text{ m/s}^2)t^2$.
where \(x \) is measured in meters and \(t \) in seconds. (a) Plot a graph of the car's position versus time. (b) Determine the instantaneous velocity of the car at \(t = 4.0 \) s, using time intervals of 0.40 s, 0.20 s, and 0.10 s. (c) Compare the average velocity during the first 4.0 s with the results of part (b).

19. Runner A is initially 4.0 mi west of a flagpole and is running with a constant velocity of 6.0 mi/h due east. Runner B is initially 3.0 mi east of the flagpole and is running with a constant velocity of 5.0 mi/h due west. How far are the runners from the flagpole when they meet?

2.3 Acceleration

20. A particle starts from rest and accelerates as shown in Figure P2.20. Determine (a) the particle’s speed at \(t = 10.0 \) s and at \(t = 20.0 \) s, and (b) the distance traveled in the first 20.0 s.

21. A 50.0-g Super Ball traveling at 25.0 m/s bounces off a brick wall and rebounds at 22.0 m/s. A high-speed camera records this event. If the ball is in contact with the wall for 3.50 ms, what is the magnitude of the average acceleration of the ball during this time interval?

22. The average person passes out at an acceleration of \(7g \) (that is, seven times the gravitational acceleration on Earth). Suppose a car is designed to accelerate at this rate. How much time would be required for the car to accelerate from rest to 60.0 miles per hour? (The car would need rocket boosters!)

23. A certain car is capable of accelerating at a rate of 0.60 m/s². How long does it take for this car to go from a speed of 55 mi/h to a speed of 60 mi/h?

24. The velocity vs. time graph for an object moving along a straight path is shown in Figure P2.24. (i) Find the average acceleration of the object during the time intervals (a) 0 to 5.0 s, (b) 5.0 s to 15 s, and (c) 0 to 20 s. (ii) Find the instantaneous acceleration at (a) 2.0 s, (b) 10 s, and (c) 18 s.

25. A steam catapult launches a jet aircraft from the aircraft carrier John C. Stennis, giving it a speed of 175 mi/h in 2.50 s. (a) Find the average acceleration of the plane. (b) Assuming the acceleration is constant, find the distance the plane moves.

2.5 One-Dimensional Motion with Constant Acceleration

26. Solve Example 2.5, “Car Chase” by a graphical method. On the same graph, plot position versus time for the car and the trooper. From the intersection of the two curves, read the time at which the trooper overtakes the car.

27. An object moving with uniform acceleration has a velocity of 12.0 cm/s in the positive \(x \)-direction when its \(x \)-coordinate is 3.00 cm. If its \(x \)-coordinate 2.00 s later is \(-5.00 \) cm, what is its acceleration?

28. In 1865, Jules Verne proposed sending men to the Moon by firing a space capsule from a 220-m-long cannon with final speed of 10.97 km/s. What would have been the unrealistically large acceleration experienced by the space travelers during their launch? (A human can stand an acceleration of 15g for a short time.) Compare your answer with the free-fall acceleration, 9.80 m/s².

29. A truck covers 40.0 m in 8.50 s while uniformly slowing down to a final velocity of 2.80 m/s. (a) Find the truck’s original speed. (b) Find its acceleration.

30. A speedboat increases its speed uniformly from \(v_i = 20.0 \) m/s to \(v_f = 30.0 \) m/s in a distance of \(2.00 \times 10^2 \) m. (a) Draw a coordinate system for this situation and label the relevant quantities, including vectors. (b) For the given information, what single equation is most appropriate for finding the acceleration? (c) Solve the equation selected in part (b) symbolically for the boat’s acceleration in terms of \(v_i, v_f, \) and \(\Delta x \). (d) Substitute given values, obtaining that acceleration. (e) Find the time it takes the boat to travel the given distance.

31. A Cessna aircraft has a lift-off speed of 120 km/h. (a) What minimum constant acceleration does the aircraft require if it is to be airborne after a takeoff run of 240 m? (b) How long does it take the aircraft to become airborne?

32. An object moves with constant acceleration 4.00 m/s² and over a time interval reaches a final velocity of 12.0 m/s. (a) If its original velocity is 6.00 m/s, what is its displacement during this time interval? (b) What is the distance it travels during this interval? (c) If its original velocity is \(-6.00 \) m/s, what is its displacement during this interval? (d) What is the total distance the aircraft travels during the interval in part (c)?

33. In a test run, a certain car accelerates uniformly from zero to 21.0 m/s in 2.95 s. (a) What is the magnitude of the car’s acceleration? (b) How long does it take the car to change its speed from 10.0 m/s to 20.0 m/s? (c) Will doubling the time always double the change in speed? Why?
34. A jet plane lands with a speed of 100 m/s and can accelerate at a maximum rate of \(-5.00\, \text{m/s}^2\) as it comes to rest. (a) From the instant the plane touches the runway, what is the minimum time needed before it can come to rest? (b) Can this plane land on a small tropical island airport where the runway is 0.800 km long?

35. Speedy Sue, driving at 30.0 m/s, enters a one-lane tunnel. She then observes a slow-moving van 155 m ahead traveling at 5.00 m/s. Sue applies her brakes but can accelerate only at \(-2.00\, \text{m/s}^2\) because the road is wet. Will there be a collision? State how you decide. If yes, determine how far into the tunnel and at what time the collision occurs. If no, determine the distance of closest approach between Sue’s car and the van.

36. A record of travel along a straight path is as follows:
1. Start from rest with a constant acceleration of 2.77 m/s\(^2\) for 15.0 s.
2. Maintain a constant velocity for the next 2.05 min.
3. Apply a constant negative acceleration of \(-9.47\, \text{m/s}^2\) for 4.39 s.
 (a) What was the total displacement for the trip?
 (b) What were the average speeds for legs 1, 2, and 3 of the trip, as well as for the complete trip?

37. A train is traveling down a straight track at 20 m/s when the engineer applies the brakes, resulting in an acceleration of \(-1.0\, \text{m/s}^2\) as long as the train is in motion. How far does the train move during a 40-s time interval starting at the instant the brakes are applied?

38. A car accelerates uniformly from rest to a speed of 40.0 mi/h in 12.0 s. Find (a) the distance the car travels during this time and (b) the constant acceleration of the car.

39. A car starts from rest and travels for 5.0 s with a uniform acceleration of +1.5 m/s\(^2\). The driver then applies the brakes, causing a uniform deceleration of \(-2.0\, \text{m/s}^2\). If the brakes are applied for 3.0 s, (a) how fast is the car going at the end of the braking period, and (b) how far has the car gone?

40. A car starts from rest and travels for \(t_1\) seconds with a uniform acceleration \(a_1\). The driver then applies the brakes, causing a uniform deceleration \(a_2\). If the brakes are applied for \(t_2\) seconds, (a) how fast is the car going just before the beginning of the braking period? (b) How far does the car go before the driver begins to brake? (c) Using the answers to parts (a) and (b) as the initial velocity and position for the motion of the car during braking, what total distance does the car travel? Answers are in terms of the variables \(a_1\), \(a_2\), \(t_1\), and \(t_2\).

41. In the Daytona 500 auto race, a Ford Thunderbird and a Mercedes Benz are moving side by side down a straightaway at 71.5 m/s. The driver of the Thunderbird realizes that she must make a pit stop, and she smoothly slows to a stop over a distance of 250 m. She spends 5.00 s in the pit and then accelerates out, reaching her previous speed of 71.5 m/s after a distance of 350 m. At this point, how far has the Thunderbird fallen behind the Mercedes Benz, which has continued at a constant speed?

42. A certain cable car in San Francisco can stop in 10 s when traveling at maximum speed. On one occasion, the driver sees a dog a distance \(d\) in front of the car and slams on the brakes instantly. The car reaches the dog 8.0 s later, and the dog jumps off the track just in time. If the car travels 4.0 m beyond the position of the dog before coming to a stop, how far was the car from the dog? (Hint: You will need three equations.)

43. A hockey player is standing on his skates on a frozen pond when an opposing player, moving with a uniform speed of 12 m/s, skates by with the puck. After 3.0 s, the first player makes up his mind to chase his opponent. If he accelerates uniformly at 4.0 m/s\(^2\), (a) how long does it take him to catch his opponent, and (b) how far has he traveled in that time? (Assume the player with the puck remains in motion at constant speed.)

44. A train 400 m long is moving on a straight track with a speed of 82.4 km/h. The engineer applies the brakes at a crossing, and later the last car passes the crossing with a speed of 16.4 km/h. Assuming constant acceleration, determine how long the train blocked the crossing. Disregard the width of the crossing.

2.6 Freely Falling Objects

45. A ball is thrown vertically upward with a speed of 25.0 m/s. (a) How high does it rise? (b) How long does it take to reach its highest point? (c) How long does the ball take to hit the ground after it reaches its highest point? (d) What is its velocity when it returns to the level from which it started?

46. A ball is thrown directly downward with an initial speed of 8.00 m/s, from a height of 30.0 m. After what time interval does it strike the ground?

47. A certain freely falling object, released from rest, requires 1.50 s to travel the last 30.0 m before it hits the ground. (a) Find the velocity of the object when it is 30.0 m above the ground. (b) Find the total distance the object travels during the fall.

48. An attacker at the base of a castle wall 3.65 m high throws a rock straight up with speed 7.40 m/s at a height of 1.55 m above the ground. (a) Will the rock reach the top of the wall? (b) If so, what is the rock’s speed at the top? If not, what initial speed must the rock have to reach the top? (c) Find the change in the speed of a rock thrown straight down from the top of the wall at an initial speed of 7.40 m/s and moving between the same two points. (d) Does the change in speed of the downward-moving rock agree with the magnitude of the speed change of the rock moving upward between the same elevations? Explain physically why or why not.

49. Traumatic brain injury such as concussion results when the head undergoes a very large acceleration. Generally, an acceleration less than 800 m/s\(^2\) lasting for any length of time will not cause injury, whereas an
50. A small mailbag is released from a helicopter that is descending steadily at 1.50 m/s. After 2.00 s, (a) what is the speed of the mailbag, and (b) how far is it below the helicopter? (c) What are your answers to parts (a) and (b) if the helicopter is rising steadily at 1.50 m/s?

51. A tennis player tosses a tennis ball straight up and then catches it after 2.00 s at the same height as the point of release. (a) What is the speed of the ball while it is in flight? (b) What is the velocity of the ball when it reaches its maximum height? Find (c) the initial velocity of the ball and (d) the maximum height it reaches.

52. A package is dropped from a helicopter that is descending steadily at a speed \(v_0 \). After \(t \) seconds have elapsed, (a) what is the speed of the package in terms of \(v_0 \), \(g \), and \(t \)? (b) What distance \(d \) is it from the helicopter in terms of \(g \) and \(t \)? (c) What are the answers to parts (a) and (b) if the helicopter is rising steadily at the same speed?

53. A model rocket is launched straight upward with an initial speed of 50.0 m/s. It accelerates with a constant upward acceleration of 2.00 m/s\(^2\) until its engines stop at an altitude of 150 m. (a) What can you say about the motion of the rocket after its engines stop? (b) What is the maximum height reached by the rocket? (c) How long after liftoff does the rocket reach its maximum height? (d) How long is the rocket in the air?

54. A baseball is hit so that it travels straight upward after being struck by the bat. A fan observes that it takes 3.00 s for the ball to reach its maximum height. Find (a) the ball’s initial velocity and (b) the height it reaches.

Additional Problems

55. A truck tractor pulls two trailers, one behind the other, at a constant speed of 100 km/h. It takes 0.600 s for the big rig to completely pass onto a bridge 400 m long. For what duration of time is all or part of the truck-trailer combination on the bridge?

56. Colonel John P. Stapp, USAF, participated in studying whether a jet pilot could survive emergency ejection. On March 19, 1954, he rode a rocket-propelled sled that moved down a track at a speed of 692 mi/h (see Fig. P2.56). He and the sled were safely brought to rest in 1.40 s. Determine in SI units (a) the negative acceleration he experienced and (b) the distance he traveled during this negative acceleration.

57. A bullet is fired through a board 10.0 cm thick in such a way that the bullet’s line of motion is perpendicular to the face of the board. If the initial speed of the bullet is 400 m/s and it emerges from the other side of the board with a speed of 300 m/s, find (a) the acceleration of the bullet as it passes through the board and (b) the total time the bullet is in contact with the board.

58. A speedboat moving at 30.0 m/s approaches a no-wake buoy marker 100 m ahead. The pilot slows the boat with a constant acceleration of \(-5.50 \text{ m/s}^2\) by reducing the throttle. (a) How long does it take the boat to reach the buoy? (b) What is the velocity of the boat when it reaches the buoy?

59. A student throws a set of keys vertically upward to his fraternity brother, who is in a window 4.00 m above. The brother’s outstretched hand catches the keys 1.50 s later. (a) With what initial velocity were the keys thrown? (b) What was the velocity of the keys just before they were caught?

60. A student throws a set of keys vertically upward to his fraternity brother, who is in a window a distance \(h \) above. The brother’s outstretched hand catches the keys on their way up a time \(t \) later. (a) With what initial velocity were the keys thrown? (b) What was the velocity of the keys just before they were caught? (Answers should be in terms of \(h \), \(g \), and \(t \)).

61. It has been claimed that an insect called the frog-hopper (*Philaenus spumarius*) is the best jumper in the animal kingdom. This insect can accelerate at 4,000 m/s\(^2\) over a distance of 2.0 mm as it straightens its specialized "jumping legs." (a) Assuming a uniform acceleration, what is the velocity of the insect after it has accelerated through this short distance, and (b) how long did it take to reach that velocity? (c) How high would the insect jump if air resistance could be ignored? Note that the actual height obtained is about 0.7 m, so air resistance is important here.

62. Draw motion diagrams (see Section 2.5) for (a) an object moving to the right at constant speed, (b) an object moving to the right and speeding up at a constant rate, (c) an object moving to the right and slowing down at a constant rate, (d) an object moving to the left and speeding up at a constant rate, and (e) an object moving to the left and slowing down at a constant rate. (f) How would your drawings change if the changes in speed were not uniform; that is, if the speed were not changing at a constant rate?
63. A ball is thrown upward from the ground with an initial speed of 25 m/s; at the same instant, another ball is dropped from a building 15 m high. After how long will the balls be at the same height?

64. To pass a physical education class at a university, a student must run 1.0 mi in 12 min. After running for 10 min, she still has 500 yd to go. If her maximum acceleration is 0.15 m/s², can she make it? If the answer is no, determine what acceleration she would need to be successful.

65. In Chapter 5 we will define the center of mass of an object. The center of mass moves with constant acceleration when constant forces act on the object. A gymnast jumps straight up, with her center of mass moving at 2.80 m/s as she leaves the ground. How high above this point is her center of mass? (a) 0.100 s, (b) 0.200 s, (c) 0.300 s, and (d) 0.500 s thereafter?

66. Two students are on a balcony a distance h above the street. One student throws a ball vertically downward at a speed v₀ at the same time, the other student throws a ball vertically upward at the same speed. Answer the following symbolically in terms of v₀, g, h, and t. (a) Write the kinematic equation for the y-coordinate of each ball. (b) Set the equations found in part (a) equal to height 0 and solve each for t symbolically using the quadratic formula. What is the difference in the two balls' time in the air? (c) Use the time-independent kinematics equation to find the velocity of each ball as it strikes the ground. (d) How far apart are the balls at a time t after they are released and before they strike the ground?

67. You drop a ball from a window on an upper floor of a building and it is caught by a friend on the ground when the ball is moving with speed v_f. You now repeat the drop, but you have a friend on the street below throw another ball upward at speed v_f exactly at the same time that you drop your ball from the window. The two balls are initially separated by 28.7 m. (a) At what time do they pass each other? (b) At what location do they pass each other relative to the window?

68. The driver of a truck slams on the brakes when he sees a tree blocking the road. The truck slows down uniformly with an acceleration of −5.60 m/s² for 4.20 s, making skid marks 62.4 m long that end at the tree. With what speed does the truck then strike the tree?

69. Emily challenges her husband, David, to catch a $1 bill as follows. She holds the bill vertically as in Figure P2.69, with the center of the bill between David’s index finger and thumb. David must catch the bill after Emily releases it without moving his hand downward. If his reaction time is 0.2 s, will he succeed?

70. A mountain climber stands at the top of a 50.0-m cliff that overhangs a calm pool of water. She throws two stones vertically downward 1.00 s apart and observes that they cause a single splash. The first stone had an initial velocity of −2.00 m/s. (a) How long after release of the first stone did the two stones hit the water? (b) What initial velocity must the second stone have had, given that they hit the water simultaneously? (c) What was the velocity of each stone at the instant it hit the water?

71. An ice sled powered by a rocket engine starts from rest on a large frozen lake and accelerates at +40 ft/s². After some time t₁, the rocket engine is shut down and the sled moves with constant velocity v for a time t₂. If the total distance traveled by the sled is 17 500 ft and the total time is 90 s, find (a) the times t₁ and t₂ and (b) the velocity v. At the 17 500-ft mark, the sled begins to accelerate at −20 ft/s². (c) What is the final position of the sled when it comes to rest? (d) How long does it take to come to rest?

72. In Bosnia, the ultimate test of a young man’s courage used to be to jump off a 400-year-old bridge (destroyed in 1993; rebuilt in 2004) into the River Neretva, 23 m below the bridge. (a) How long did the jump last? (b) How fast was the jumper traveling upon impact with the river? (c) If the speed of sound in air is 340 m/s, how long after the jumper took off did a spectator on the bridge hear the splash?

73. A person sees a lightning bolt pass close to an airplane that is flying in the distance. The person hears thunder 5.0 s after seeing the bolt and sees the airplane overhead 10 s after hearing the thunder. The speed of sound in air is 1 100 ft/s. (a) Find the distance of the airplane from the person at the instant of the bolt. (Neglect the time it takes the light to travel from the bolt to the eye.) (b) Assuming the plane travels with a constant speed toward the person, find the velocity of the airplane. (c) Look up the speed of light in air and defend the approximation used in part (a).

74. A glider on an air track carries a flag of length ℓ through a stationary photogate, which measures the time interval Δt during which the flag blocks a beam of infrared light passing across the photogate. The ratio v_f = ℓ/Δt is the average velocity of the glider over this part of its motion. Suppose the glider moves with constant acceleration. (a) Is v_f necessarily equal to the instantaneous velocity of the glider when it is halfway through the photogate in space? Explain. (b) Is v_f equal to the instantaneous velocity of the glider when it is halfway through the photogate in time? Explain.

75. A stuntman sitting on a tree limb wishes to drop vertically onto a horse galloping under the tree. The constant speed of the horse is 10.0 m/s, and the man is initially 3.00 m above the level of the saddle. (a) What must be the horizontal distance between the saddle and the limb when the man makes his move? (b) How long is he in the air?