Chapter 23. Two Categorical Variables: The Chi-Square Test

Two-Way Tables

Note. We quickly review two-way tables with an example.

Example. Exercise 23.2a page 550.

Expected Counts in Two-Way Tables

Definition. The expected count in any cell of a two-way table when H_0 is true is

$$\text{expected count} = \frac{\text{row total} \times \text{column total}}{\text{table total}}.$$

Example. Exercise 23.6 page 554.

The Chi-Square Test

Definition. The chi-square test is a measure of how far the observed counts in a two-way table are from the expected counts. The formula for the statistic is

$$\chi^2 = \sum \frac{(\text{observed count} - \text{expected count})^2}{\text{expected count}}.$$

The sum is over all cells in the table.
Cell Counts Required for the Chi-Square Test

Note. You can safely use the chi-square test with critical values from the chi-square distribution when no more than 20% of the expected counts are less than 5 and all individual expected counts are 1 or greater. In particular, all four expected counts in a 2×2 table should be 5 or greater.

Uses of the Chi-Square Test

Note. Use the chi-square test to test the null hypothesis:

H_0: there is no relationship between two categorical variables when you have a two-way table from one of these situations:

- Independent SRSs from each of two or more populations, with each individual classified according to one categorical variable. (The other variable says which sample the individual comes from.)

- A single SRS, with each individual classified according to both of two categorical variables.
The Chi-Square Distributions

Note. The chi-square distributions are a family of distributions that take only positive values and are skewed to the right. A specific chi-square distribution is specified by giving its degrees of freedom. The chi-square test for a two-way table with r rows and c columns uses critical values from the chi-square distribution with $(r - 1)(c - 1)$ degrees of freedom. The P-value is the area to the right of χ^2 under the density curve of this chi-square distribution. Table E gives the relationships between the degrees of freedom, χ^2, and P-values.

Example. Exercise 23.40 page 577.

Example S.23.1. χ^2-Stooges.
We now consider all 190 Three Stooges films and two categories. One category is “the role of third stooge” (Curly/Shemp/Joe) and the other is “number of slaps in the film” (which we break into intervals as $[0, 10]$, $[11, 20]$, $[21, 30]$, $[31, 40]$, $[41, \infty]$). Notice that both of these are in fact categorical variables, even though “number of slaps in the film” could be dealt with as a quantitative variable. The data can be put in a two-way table as follows. (This is similar to Example S.6.1.)
Chapter 23. Two Categorical Variables: The Chi-Square Test

<table>
<thead>
<tr>
<th></th>
<th>Curly</th>
<th>Shemp</th>
<th>Joe</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 10 slaps</td>
<td>49</td>
<td>34</td>
<td>10</td>
<td>93</td>
</tr>
<tr>
<td>11 to 20 slaps</td>
<td>36</td>
<td>21</td>
<td>5</td>
<td>62</td>
</tr>
<tr>
<td>21 to 30 slaps</td>
<td>7</td>
<td>14</td>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>31 to 40 slaps</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>more than 40 slaps</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>97</td>
<td>77</td>
<td>16</td>
<td>190</td>
</tr>
</tbody>
</table>

Calculate the χ^2 statistic and perform a χ^2 test on H_0: there is no relationship between two categorical variables.

Solution. First observe that the number of degrees of freedom is $df = (r - 1)(c - 1) = (5 - 1)(3 - 1) = 8$. Using the first formula of this chapter, we find the following expected counts:

<table>
<thead>
<tr>
<th></th>
<th>Curly</th>
<th>Shemp</th>
<th>Joe</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 10 slaps</td>
<td>47.48</td>
<td>37.69</td>
<td>7.83</td>
<td>93</td>
</tr>
<tr>
<td>11 to 20 slaps</td>
<td>31.65</td>
<td>25.13</td>
<td>5.22</td>
<td>62</td>
</tr>
<tr>
<td>21 to 30 slaps</td>
<td>11.23</td>
<td>8.92</td>
<td>1.85</td>
<td>22</td>
</tr>
<tr>
<td>31 to 40 slaps</td>
<td>2.55</td>
<td>2.03</td>
<td>0.42</td>
<td>5</td>
</tr>
<tr>
<td>more than 40 slaps</td>
<td>4.08</td>
<td>3.24</td>
<td>0.67</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>97</td>
<td>77</td>
<td>16</td>
<td>190</td>
</tr>
</tbody>
</table>

We now sum over the 15 table entries to calculate the χ^2
statistic:
\[
\frac{(49 - 47.48)^2}{47.48} + \frac{(34 - 37.69)^2}{37.69} + \frac{(10 - 7.83)^2}{7.83} + \frac{(36 - 31.65)^2}{31.65} + \frac{(21 - 25.13)^2}{25.13} + \frac{(5 - 5.22)^2}{5.22} + \\
\frac{(7 - 11.23)^2}{11.23} + \frac{(14 - 8.92)^2}{8.92} + \frac{(1 - 1.85)^2}{1.85} + \frac{(3 - 2.55)^2}{2.55} + \frac{(2 - 2.03)^2}{2.03} + \frac{(0 - 0.42)^2}{0.42} + \\
\frac{(2 - 4.08)^2}{4.08} + \frac{(6 - 3.24)^2}{3.24} + \frac{(0 - 0.67)^2}{0.67} = 11.754.
\]

We now find \(\chi^2 = 11.754 \) in Table E in the row containing \(df = 8 \). We see that 11.754 lies in Table E between \(p = 0.20 \) and \(p = 0.15 \). Software (Minitab, say) gives \(p = 0.1625 \). The \(p \) value is not small enough for us to reject the null hypothesis that there is not relationship between two categorical variables.
The Chi-Square Test for Goodness of Fit

Note. A categorical variable has k possible outcomes with probabilities $p_1, p_2, 0_3, \ldots, p_k$. That is, p_i is the probability of the ith outcome. We have n independent observations from this categorical variable. To test the null hypothesis that the probabilities have specified values

$$H_0 : p_1 = p_{10}, p_2 = p_{20}, \ldots, p_k = p_{k0}$$

use the chi-square statistic

$$\chi^2 = \sum \frac{(\text{count of outcome } i - np_{i0})^2}{np_{i0}}.$$

The P-value is the area to the right of χ^2 under the density curve of the chi-square distribution with $k - 1$ degrees of freedom.

Example. Exercise 23.16 page 568.