Chapter 2. Limits and Continuity

2.3 The Precise Definition of a Limit

(Read this section of the text! These are the most important 7 pages in this 1200 page book!)

Definition. Formal Definition of Limit

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that f(x) approaches the *limit* L as x approaches x_0 and write $\lim_{x \to x_0} f(x) = L$, if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all x,

 $0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \epsilon.$

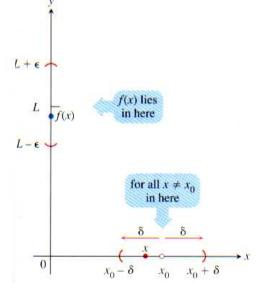


Figure 1.11 from Edition 10, page 93

Example. Prove for f(x) = mx + b, $m \neq 0$, that $\lim_{x \to a} f(x) = f(a)$.

Examples. Page 82 number 12, page 83 numbers 20 and 40.

Theorem 1. Sum Rule. If

 $\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = M, \quad \text{then}$

then $\lim_{x \to c} (f(x) + g(x)) = L + M.$

Proof. We wish to prove $\lim_{x\to c} (f(x) + g(x)) = L + M$ under the assumptions $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$. Let $\epsilon > 0$ be given. Then $\epsilon/2 > 0$ and there exists $\delta_1 > 0$ such that for all x with $0 < |x - c| < \delta_1$ we have $|f(x) - L| < \epsilon/2$. Similarly, there exists $\delta_2 > 0$ such that for all x with $0 < |x - c| < \delta_2$ we have $|g(x) - M| < \epsilon/2$. Therefore we choose $\delta = \min\{\delta_1, \delta_2\}$. Then for $0 < |x - c| < \delta$ we have

$$\begin{split} |(f(x) + g(x)) - (L + M)| &\leq |(f(x) - L) + (g(x) - M)| \\ &\leq |f(x) - L| + |g(x) - M| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} \\ &= \epsilon. \end{split}$$

This proves the result.

Q.E.D.

Example. Page 85 number 58.