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Chapter 3. Differentiation

3.1 Tangents and the Derivative at a Point

Note. We now return to an idea introduced in Section 2.1: Slopes of

lines tangent to curves.

Definition. Slope and Tangent Line.
The slope of the curve y = f(x) at the point P(xg, f(x)) is the number
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provided the limit exists. The tangent line to the curve at P is the line

through P with this slope.
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Figure 3.1, page 122
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Example. Page 125 number 7.

Definition. Derivative at a Point.

The derivative of a function f at a point xy, denoted f'(xy), is
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provided this limit exists.
Example. Page 125 number 26.

Note. Since the derivative of a function at a point is a limit of an average
rate of change (to recall a topic from Section 2.1), then we see that the
derivative can be interpreted as an instantaneous rate of change of the
function f with respect to the variable x. For example, if f(¢) is the
position of a particle at time ¢, then the instantaneous rate of change of
position with respect to time (i.e. the instantaneous velocity) at time

t:tois
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provided the limit exists.

Examples. Page 125 number 28 and Page 126 number 36 (vertical

tangents).



