Chapter 3. Differentiation

3.11 Linearization and Differentials

Definition. If f is differentiable at x = a, then the approximating function

$$L(x) = f(a) + f'(a)(x - a)$$

is the linearization of f at a.

Example. Page 210 number 2.

Definition. Let y = f(x) be a differentiable function. The differential dx is an independent variable. The differential dy is

$$dy = f'(x) dx.$$

Example. Page 210 number 28 and 38.

Note. Differential Estimate of Change.

Let f(x) be differentiable at x = a. The approximate change in the value of f when x changes from a to a + dx is

$$df = f'(a) dx.$$

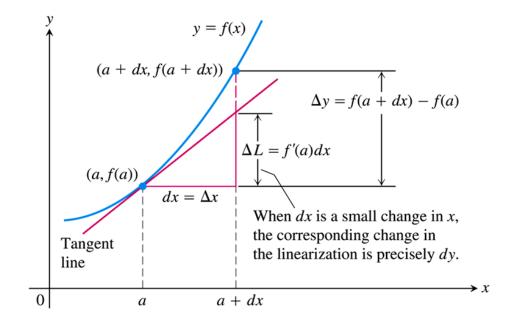


Figure 3.54, Page 205

Example. Use differentials to estimate the value of sin 31°.

Definition. We can compare actual changes in a function and the estimated change which is calculated from the use of differentials. We consider the absolute, relative, and percentage change:

	True	Estimated
Absolute change	$\Delta f = f(a + dx) - f(a)$	df = f'(a) dx
Relative change	$\frac{\Delta f}{f(a)}$	$\frac{df}{f(a)}$
Percentage change	$\frac{\Delta f}{f(a)} \times 100\%$	$\frac{df}{f(a)} \times 100\%$

Example. Page 211 number 56 and 58.