Chapter 3. Differentiation3.6 The Chain Rule

Note. The Chain Rule allows us to differentiate Compositions of functions.

Theorem 2. The Chain Rule.

If f(u) is differentiable at the point u = g(x) and g(x) is differentiable at x, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x, and

$$(f \circ g)'(x) = f'(g(x))[g'(x)].$$

In Leibniz's notation, if y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx},$$

where dy/du is evaluated at u = g(x).

Note. Every time we use the Chain Rule, we will insert a little arrow indicating that the Chain Rule "spits out" the derivative of the inner function in the composition:

$$(f \circ g)'(x) = f'(g(x))[g'(x)] \text{ and } \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Note. The proof of the Chain Rule is rather complicated — see Section 3.11.

Note. If $f(u) = u^n$ where n is an integer, then

$$\frac{d}{dx}[f(g(x))] = \frac{d}{dx}[(g(x))^n] = ng(x)^{n-1}[g'(x)]$$

The text calls this the *Power Chain Rule*.

Examples. Page 167 number 8, Page 168 numbers 48 and 64.

Note. If $f(u) = e^u$ where u = g(x) is a function of x, then

$$\frac{d}{dx}[e^u] = \frac{d}{dx}[e^{g(x)}] = e^{g(x)}[g'(x)].$$

Examples. Page 168 number 58, page 169 number 102