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Chapter 3. Differentiation

3.9. Inverse Trigonometric Functions

Recall. The six inverse trigonometric functions are defined as follows:

1. y = cos−1 x if and only if cos y = x and y ∈ [0, π].

2. y = sin−1 x if and only if sin y = x and y ∈ [−π/2, π/2].

3. y = tan−1 x if and only if tan y = x and y ∈ (−π/2, π/2).

4. y = sec−1 x if and only if sec y = x and y ∈ [0, π/2)
⋃

(π/2, π].

5. y = csc−1 x if and only if csc y = x and y ∈ [−π/2, 0)
⋃

(0, π/2].

6. y = cot−1 x if and only if cot y = x and y ∈ (0, π).

For all appropriate x values:

sec−1 x = cos−1(1/x)

csc−1 x = sin−1(1/x)

cot−1 x = π/2 − tan−1 x.
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Note. The graphs of the six inverse trig functions are:

Figure 3.39 Page 186
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Example. Page 191 numbers 4 and 14.

Theorem. We differentiate sin−1 as follows:

d

dx

[

sin−1 u
]

=

y

1√
1 − u2

[

du

dx

]

where |u| < 1.

Proof. We know that if y = sin−1 x then (for appropriate domain and

range values) sin y = x and so by implicit differentiation

d

dx
[sin y] =

d

dx
[x]

y

cos y

[

dy

dx

]

= 1

dy

dx
=

1

cos y
.

Since we have restricted y to the interval [−π/2, π/2], we know that

cos y ≥ 0 and so cos y = +
√

1 − (sin y)2 =
√

1 − x2. Making this substi-

tution we get
d

dx

[

sin−1 x
]

=
1√

1 − x2
.

The theorem then follows from the Chain Rule. Q.E.D.

Example. Page 191 number 24.
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Theorem. We differentiate tan−1 as follows:

d

dx

[

tan−1 u
]

=

y

1

1 + u2

[

du

dx

]

.

Proof. We know that if y = tan−1 x then (for appropriate domain and

range values) tan y = x and so by implicit differentiation

d

dx
[tan y] =

d

dx
[x]

y

sec2 y

[

dy

dx

]

= 1

dy

dx
=

1

sec2 y

=
1

1 + (tan y)2

=
1

1 + x2
.

The theorem then follows from the Chain Rule. Q.E.D.

Example. Page 191 number 34.
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Theorem. We differentiate sec−1 as follows:

d

dx

[

sec−1 u
]

=

y

1

|u|
√

u2 − 1

[

du

dx

]

where |u| > 1.

Proof. We know that if y = sec−1 x then (for appropriate domain and

range values) sec y = x and so by implicit differentiation

d

dx
[sec y] =

d

dx
[x]

y

sec y tan y

[

dy

dx

]

= 1

dy

dx
=

1

sec y tan y
.

We now need to express this last expression in terms of x. First, sec y = x

and tan y = ±
√

sec2 y − 1 = ±
√

x2 − 1. Therefore we have

d

dx

[

sec−1
]

= ± 1

x
√

x2 − 1
.

Notice from the graph of y = sec−1 x above, that the slope of this function

is positive where ever it is defined. So

d

dx

[

sec−1 x
]

=







+ 1

x

√
x

2−1
if x > 1

− 1

x

√
x

2−1
if x < −1.

Notice that if x > 1 then x = |x| and if x < −1 then −x = |x|. Therefore

d

dx

[

sec−1 x
]

=
1

|x|
√

x2 − 1
.
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The Theorem then follows from the Chain Rule. Q.E.D.

Note. We can use the following identities to differentiate the other three

inverse trig functions:

cos−1 x = π/2 − sin−1 x

cot−1 x = π/2 − tan−1 x

csc−1 x = π/2 − sec−1 x

We then see that the only difference in the derivative of an inverse trig

function and the derivative of the inverse of its cofunction is a negative

sign. In summary, that is (Table 3.1 page 190):

1.
d

dx

[

sin−1 u
]

=
du/dx√
1 − u2

, |u| < 1

2.
d

dx

[

cos−1 u
]

= − du/dx√
1 − u2

, |u| < 1

3.
d

dx

[

tan−1 u
]

=
du/dx

1 + u2

4.
d

dx

[

cot−1 u
]

= −du/dx

1 + u2

5.
d

dx

[

sec−1 u
]

=
du/dx

|u|
√

u2 − 1
, |u| > 1

6.
d

dx

[

csc−1 u
]

=
−du/dx

|u|
√

u2 − 1
, |u| < 1

Example. Page 191 numbers 40 and 56.


