Chapter 3. Differentiation3.9. Inverse Trigonometric Functions

Recall. The six inverse trigonometric functions are defined as follows: 1. $y = \cos^{-1} x$ if and only if $\cos y = x$ and $y \in [0, \pi]$. 2. $y = \sin^{-1} x$ if and only if $\sin y = x$ and $y \in [-\pi/2, \pi/2]$. 3. $y = \tan^{-1} x$ if and only if $\tan y = x$ and $y \in (-\pi/2, \pi/2)$. 4. $y = \sec^{-1} x$ if and only if $\sec y = x$ and $y \in [0, \pi/2) \bigcup (\pi/2, \pi]$. 5. $y = \csc^{-1} x$ if and only if $\csc y = x$ and $y \in [-\pi/2, 0) \bigcup (0, \pi/2]$. 6. $y = \cot^{-1} x$ if and only if $\cot y = x$ and $y \in (0, \pi)$.

For all appropriate x values:

$$\sec^{-1} x = \cos^{-1}(1/x)$$
$$\csc^{-1} x = \sin^{-1}(1/x)$$
$$\cot^{-1} x = \pi/2 - \tan^{-1} x.$$

Note. The graphs of the six inverse trig functions are:

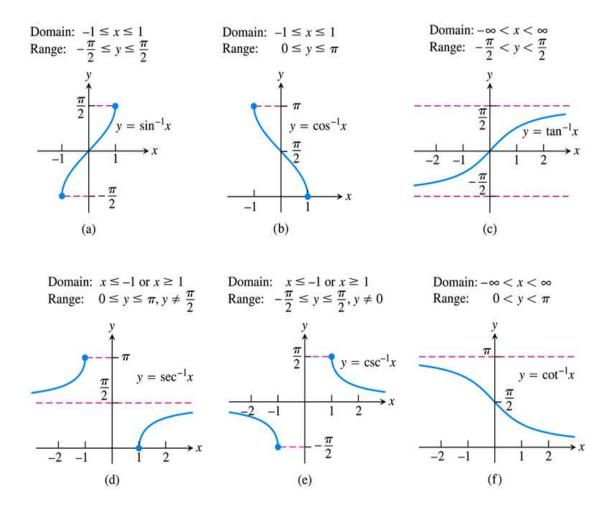


Figure 3.39 Page 186

Example. Page 191 numbers 4 and 14.

Theorem. We differentiate \sin^{-1} as follows:

$$\frac{d}{dx}\left[\sin^{-1}u\right] = \frac{1}{\sqrt{1-u^2}} \left[\frac{du}{dx}\right]$$

where |u| < 1.

Proof. We know that if $y = \sin^{-1} x$ then (for appropriate domain and range values) $\sin y = x$ and so by implicit differentiation

$$\frac{d}{dx}[\sin y] = \frac{d}{dx}[x]$$

$$\cos y \left[\frac{dy}{dx}\right] = 1$$

$$\frac{dy}{dx} = \frac{1}{\cos y}.$$

Since we have restricted y to the interval $[-\pi/2, \pi/2]$, we know that $\cos y \ge 0$ and so $\cos y = +\sqrt{1 - (\sin y)^2} = \sqrt{1 - x^2}$. Making this substitution we get

$$\frac{d}{dx}\left[\sin^{-1}x\right] = \frac{1}{\sqrt{1-x^2}}$$

The theorem then follows from the Chain Rule. Q.E.D.

Example. Page 191 number 24.

Theorem. We differentiate \tan^{-1} as follows:

$$\frac{d}{dx}\left[\tan^{-1}u\right] = \frac{1}{1+u^2} \left[\frac{du}{dx}\right].$$

Proof. We know that if $y = \tan^{-1} x$ then (for appropriate domain and range values) $\tan y = x$ and so by implicit differentiation

$$\frac{d}{dx} [\tan y] = \frac{d}{dx} [x]$$

$$\sec^2 y \left[\frac{dy}{dx} \right] = 1$$

$$\frac{dy}{dx} = \frac{1}{\sec^2 y}$$

$$= \frac{1}{1 + (\tan y)^2}$$

$$= \frac{1}{1 + x^2}.$$

The theorem then follows from the Chain Rule.

Q.E.D.

Example. Page 191 number 34.

Theorem. We differentiate \sec^{-1} as follows:

$$\frac{d}{dx}\left[\sec^{-1}u\right] = \frac{1}{|u|\sqrt{u^2 - 1}} \left[\frac{du}{dx}\right]$$

where |u| > 1.

Proof. We know that if $y = \sec^{-1} x$ then (for appropriate domain and range values) $\sec y = x$ and so by implicit differentiation

$$\frac{d}{dx}[\sec y] = \frac{d}{dx}[x]$$

$$\sec y \tan y \left[\frac{dy}{dx}\right] = 1$$

$$\frac{dy}{dx} = \frac{1}{\sec y \tan y}$$

We now need to express this last expression in terms of x. First, sec y = xand $\tan y = \pm \sqrt{\sec^2 y - 1} = \pm \sqrt{x^2 - 1}$. Therefore we have

$$\frac{d}{dx}\left[\sec^{-1}\right] = \pm \frac{1}{x\sqrt{x^2 - 1}}$$

Notice from the graph of $y = \sec^{-1} x$ above, that the slope of this function is positive where ever it is defined. So

$$\frac{d}{dx} \left[\sec^{-1} x \right] = \begin{cases} +\frac{1}{x\sqrt{x^2 - 1}} & \text{if } x > 1 \\ -\frac{1}{x\sqrt{x^2 - 1}} & \text{if } x < -1 \end{cases}$$

Notice that if x > 1 then x = |x| and if x < -1 then -x = |x|. Therefore

$$\frac{d}{dx}\left[\sec^{-1}x\right] = \frac{1}{|x|\sqrt{x^2 - 1}}.$$

The Theorem then follows from the Chain Rule. Q.E.D.

Note. We can use the following identities to differentiate the other three inverse trig functions:

$$\cos^{-1} x = \pi/2 - \sin^{-1} x$$
$$\cot^{-1} x = \pi/2 - \tan^{-1} x$$
$$\csc^{-1} x = \pi/2 - \sec^{-1} x$$

We then see that the only difference in the derivative of an inverse trig function and the derivative of the inverse of its cofunction is a negative sign. In summary, that is (Table 3.1 page 190):

1.
$$\frac{d}{dx} \left[\sin^{-1} u \right] = \frac{du/dx}{\sqrt{1 - u^2}}, |u| < 1$$

2. $\frac{d}{dx} \left[\cos^{-1} u \right] = -\frac{du/dx}{\sqrt{1 - u^2}}, |u| < 1$
3. $\frac{d}{dx} \left[\tan^{-1} u \right] = \frac{du/dx}{1 + u^2}$
4. $\frac{d}{dx} \left[\cot^{-1} u \right] = -\frac{du/dx}{1 + u^2}$
5. $\frac{d}{dx} \left[\sec^{-1} u \right] = \frac{du/dx}{|u|\sqrt{u^2 - 1}}, |u| > 1$
6. $\frac{d}{dx} \left[\csc^{-1} u \right] = \frac{-du/dx}{|u|\sqrt{u^2 - 1}}, |u| < 1$

Example. Page 191 numbers 40 and 56.