Chapter 4. Applications of Derivatives4.2 The Mean Value Theorem

Theorem 3. Rolle's Theorem.

Suppose that y = f(x) is continuous at every point of [a, b] and differentiable at every point of (a, b). If f(a) = f(b) = 0, then there is at least one number c in (a, b) at which f'(c) = 0.

Proof. Since f is continuous by hypothesis, f assumes an absolute maximum and minimum for $x \in [a, b]$ by Theorem 1 (the Extreme Value Theorem). These extrema occur only

- **1.** at interior points where f' is zero
- **2.** at interior points where f' does not exist
- **3.** at the endpoints of the function's domain, a and b.

Since we have hypothesized that f is differentiable on (a, b), then Option 2 is not possible.

In the event of Option 1, the point at which an extreme occurs, say c, must satisfy f'(c) = 0 by Theorem 2 of Section 3.1 (Local Extreme Values). Therefore the theorem holds.

In the event of Option 3, the maximum and minimum occur at the endpoints a and b (where f is 0) and so f must be a constant of 0 throughout the interval. Therefore f'(x) = 0 for all $x \in (a, b)$, by the "Derivative of a Constant Function" page 135, and the theorem holds. *QED*

Example. Page 237 number 60.

Theorem 4. The Mean Value Theorem

Suppose that y = f(x) is continuous on a closed interval [a, b] and differentiable on the interval (a, b). Then there is at least one point $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Figure 4.13, Page 231

Examples. Page 236 number 2, page 237 numbers 52 and 68.

Corollary 1. Functions with Zero Derivatives Are Constant Functions.

If f'(x) = 0 at each point of an interval I, then f(x) = k for all $x \in I$, where k is a constant.

Note. Corollary 1 is the *converse* of the "Derivative of a Constant Function" page 135.

Corollary 2. Functions with the Same Derivative Differ by a Constant

If f'(x) = g'(x) at each point of an interval (a, b), then there exists a constant k such that f(x) = g(x) + k for all $x \in (a, b)$.

Proof. Consider the function h(x) = f(x) - g(x). Under our hypothesis, h(x) is constant on I and so h'(x) = 0 for all $x \in (a, b)$. So by Corollary 1, h(x) = k in I. Therefore f(x) - g(x) = k and f(x) = g(x) + k. QED

Example. Page 237 number 40.

Theorem. The following **Properties of Logarithms** are stated on page 44. We now use calculus to justify these properties. For any numbers a > 0 and x > 0 we have

1.
$$\ln ax = \ln a + \ln x$$

2. $\ln \frac{a}{x} = \ln a - \ln x$
3. $\ln \frac{1}{x} = -\ln x$
4. $\ln x^r = r \ln x$.

Proof. First for **1**. Notice that

$$\frac{d}{dx}\left[\ln ax\right] = \frac{1}{ax} \frac{d}{dx}\left[ax\right] = \frac{1}{ax} \left[a\right] = \frac{1}{x}.$$

This is the same as the derivative of $\ln x$. Therefore by Corollary 2 to the Mean Value Theorem, $\ln ax$ and $\ln x$ differ by a constant, say $\ln ax =$ $\ln x + k_1$ for some constant k_1 . By setting x = 1 we need $\ln a = \ln 1 + k_1 =$ $0 + k_1 = k_1$. Therefore $k_1 = \ln a$ and we have the identity $\ln ax =$ $\ln a + \ln x$.

Now for **2**. We know by **1**:

$$\ln\frac{1}{x} + \ln x = \ln\left(\frac{1}{x}x\right) = \ln 1 = 0.$$

Therefore $\ln \frac{1}{x} = -\ln x$. Again by **1** we have $\ln \frac{a}{x} = \ln \left(a\frac{1}{x}\right) = \ln a + \ln \frac{1}{x} = \ln a - \ln x.$

Finally for **4**. We have by the Chain Rule (in the form of the previous theorem):

$$\frac{d}{dx}[\ln x^n] = \frac{1}{x^n} \frac{d}{dx}[x^n] = \frac{1}{x^n} [nx^{n-1}] = n\frac{1}{x} = n\frac{d}{dx}[\ln x] = \frac{d}{dx}[n\ln x].$$

As in the proof of $\mathbf{1}$, since $\ln x^n$ and $n \ln x$ have the same derivative, we have $\ln x^n = n \ln x + k_2$ for some k_2 . With x = 1 we see that $k_2 = 0$ and we have $\ln x^n = n \ln x$. Q.E.D.

Theorem. For all numbers x, x_1 , and x_2 , the natural exponential e^x obeys the following laws:

1. $e^{x_1} \cdot e^{x_2} = e^{x_1 + x_2}$. 2. $e^{-x} = \frac{1}{e^x}$ 3. $\frac{e^{x_1}}{e^{x_2}} = e^{x_1 - x_2}$ 4. $(e^{x_1})^{x_2} = e^{x_1 x_2} = (e^{x_2})^{x_1}$

Note. The proofs are based on the definition of $y = e^x$ in terms of $x = \ln y$ and properties of the natural logarithm function.