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Chapter 4. Applications of Derivatives

4.2 The Mean Value Theorem

Theorem 3. Rolle’s Theorem.

Suppose that y = f (x) is continuous at every point of [a, b] and differen-

tiable at every point of (a, b). If f (a) = f (b) = 0, then there is at least

one number c in (a, b) at which f ′(c) = 0.

Proof. Since f is continuous by hypothesis, f assumes an absolute max-

imum and minimum for x ∈ [a, b] by Theorem 1 (the Extreme Value

Theorem). These extrema occur only

1. at interior points where f ′ is zero

2. at interior points where f ′ does not exist

3. at the endpoints of the function’s domain, a and b.

Since we have hypothesized that f is differentiable on (a, b), then Option

2 is not possible.

In the event of Option 1, the point at which an extreme occurs, say

c, must satisfy f ′(c) = 0 by Theorem 2 of Section 3.1 (Local Extreme

Values). Therefore the theorem holds.
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In the event of Option 3, the maximum and minimum occur at the end-

points a and b (where f is 0) and so f must be a constant of 0 throughout

the interval. Therefore f ′(x) = 0 for all x ∈ (a, b), by the “Derivative of

a Constant Function” page 135, and the theorem holds. QED

Example. Page 237 number 60.

Theorem 4. The Mean Value Theorem

Suppose that y = f (x) is continuous on a closed interval [a, b] and differ-

entiable on the interval (a, b). Then there is at least one point c ∈ (a, b)

such that

f ′(c) =
f (b) − f (a)

b − a
.

Figure 4.13, Page 231
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Examples. Page 236 number 2, page 237 numbers 52 and 68.

Corollary 1. Functions with Zero Derivatives Are Constant

Functions.

If f ′(x) = 0 at each point of an interval I , then f (x) = k for all x ∈ I ,

where k is a constant.

Note. Corollary 1 is the converse of the “Derivative of a Constant Func-

tion” page 135.

Corollary 2. Functions with the Same Derivative Differ by

a Constant

If f ′(x) = g′(x) at each point of an interval (a, b), then there exists a

constant k such that f (x) = g(x) + k for all x ∈ (a, b).

Proof. Consider the function h(x) = f (x)−g(x). Under our hypothesis,

h(x) is constant on I and so h′(x) = 0 for all x ∈ (a, b). So by Corollary

1, h(x) = k in I . Therefore f (x)− g(x) = k and f (x) = g(x) + k. QED

Example. Page 237 number 40.
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Theorem. The following Properties of Logarithms are stated on

page 44. We now use calculus to justify these properties. For any numbers

a > 0 and x > 0 we have

1. ln ax = ln a + lnx

2. ln
a

x
= ln a − lnx

3. ln
1

x
= − lnx

4. lnxr = r lnx.

Proof. First for 1. Notice that

d

dx
[ln ax] =

y

1

ax

d

dx
[ax] =

y

1

ax
[a] =

1

x
.

This is the same as the derivative of lnx. Therefore by Corollary 2 to

the Mean Value Theorem, ln ax and ln x differ by a constant, say ln ax =

ln x+k1 for some constant k1. By setting x = 1 we need ln a = ln 1+k1 =

0 + k1 = k1. Therefore k1 = ln a and we have the identity ln ax =

ln a + lnx.

Now for 2. We know by 1:

ln
1

x
+ lnx = ln

(

1

x
x

)

= ln 1 = 0.
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Therefore ln
1

x
= − lnx. Again by 1 we have

ln
a

x
= ln

(

a
1

x

)

= ln a + ln
1

x
= ln a − ln x.

Finally for 4. We have by the Chain Rule (in the form of the previous

theorem):

d

dx
[lnxn] =

y

1

xn

d

dx
[xn] =

y

1

xn

[

nxn−1
]

= n
1

x
=

y

n
d

dx
[lnx] =

d

dx
[n lnx] .

As in the proof of 1, since ln xn and n lnx have the same derivative, we

have ln xn = n lnx + k2 for some k2. With x = 1 we see that k2 = 0 and

we have ln xn = n ln x. Q.E.D.

Theorem. For all numbers x, x1, and x2, the natural exponential ex

obeys the following laws:

1. ex1 · ex2 = ex1+x2.

2. e−x =
1

ex

3.
ex1

ex2

= ex1−x2

4. (ex1)x2 = ex1x2 = (ex2)x1

Note. The proofs are based on the definition of y = ex in terms of

x = ln y and properties of the natural logarithm function.


