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Chapter 4. Applications of Derivatives
4.8 Antiderivatives

Definition. A function F'(x) is an antiderivative of a function f(x) if
F'(x) = f(x) for all x in the domain of f. The most general antiderivative
(which is really the set of all antiderivatives) of f is the indefinite integral
of f with respect to x, denoted by / f(z) dx. The symbol / is an integral
sign. The function f is the integrand of the integral, and x is the variable

of integration.

Note. We denote the indefinite integral (set) as
/f(x)dx: F(x)+C

where F' is a specific antiderivative and C' represents an “arbitrary con-

stant.” (In class, we will use “k” for a specific constant.)

Note. In terms of the notation of indefinite integrals, we have (from

Table 4.2; with k = 1 we get the table after the following one):
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Note. Based on the properties of differentiation, we have the following
“linearity rules” for indefinite integrals. Suppose F'is an antiderivative of

f, G is an antiderivative of g, and k is a constant.
1. Constant Multiple rule: [kf(z)dx =k [ f(z)dx = kF(z) + C.
2. Negative Rule: — f(z) dx = —/f(x) de =—F(x)+C.

3. Sum or Difference Rule: /f(a:) + g(z)dr = /f(a:) dx + / G(z)dx =
F(x) £ G(z)+ C.

Examples. Page 285 number 32 and Page 286 numbers 54 and 66.

Definition. A differential equation is an equation relating an unknown
function y of x and one or more of its derivatives. A function whose
derivatives satisfy a differential equation is called a solution of the differ-
ential equation and the set of all solutions is called the general solution.
The problem of finding a specific function y of x which is a solution to a
differential equation and satisfies certain initial condition(s) of the form

y(xo) = yo, Y'(T0) = Yy, ete., is called an initial value problem.

Examples. Page 287 number 116 and 102, Page 288 number 120.



