Chapter 2. Limits and Continuity

2.2. Calculating Limits Using the Limit Laws

Theorem 1. Limit Rules.

If L, M, c, and k are real numbers and

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=M, \quad \text { then }
$$

1. Sum Rule: $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$.
2. Difference Rule: $\lim _{x \rightarrow c}(f(x)-g(x))=L-M$.
3. Product Rule: $\lim _{x \rightarrow c}(f(x) \cdot g(x))=L \cdot M$.
4. Constant Multiple Rule: $\lim _{x \rightarrow c}(k \cdot f(x))=k \cdot L$.
5. Quotient Rule: $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}, \quad M \neq 0$.
6. Power Rule: If r and s are integers with no common factor and $s \neq 0$, then

$$
\lim _{x \rightarrow c}(f(x))^{r / s}=L^{r / s}
$$

provided that $L^{r / s}$ is a real number AND $L>0$ when s is even.

Example. Page 84 number 38.

Theorem 2. Limits of Polynomials Can Be Found by Substitution.

If $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ then

$$
\lim _{x \rightarrow c} P(x)=P(c)=a_{n} c^{n}+a_{n-1} c^{n-1}+\cdots+a_{0} .
$$

Theorem 3. Limits of Rational Functions Can Be Found by

 Substituting IF the Limit of the Denominator Is Not Zero. If $P(x)$ and $Q(x)$ are polynomials and $Q(c) \neq 0$, then$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)} .
$$

Example. Page 83 numbers 4 and 10 .

Theorem. Dr. Bob's Theorem. (NOT IN 11TH EDITION!)
If $f(x)=g(x)$ for all x in an open interval containing c, except possibly c itself, then

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)
$$

provided these limits exist.

Note. We have to be careful in our dealings with functions! Notice that $f(x)=\frac{x(x-1)}{x-1}$ and $g(x)=x$ are NOT the same functions! They do not even have the same domains. Therefore we cannot in general say $\frac{x(x-1)}{x-1}=x$. However, this equality holds if x lies in the domains of the functions. We can say:

$$
\frac{x(x-1)}{x-1}=x \mathbf{I F} x \neq 1 .
$$

We can also say $f(x)=g(x)$ IF $x \neq 1$. If we are concerned with limits as x approaches 1 , then from the definition, x IS NOT EQUAL TO 1 (but near 1). Therefore we can say $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} g(x)$. We have not said that the functions are equal, but that their limits are.

Example. Page 83 numbers 28 and 32 .

Theorem 4. Sandwich Theorem.

Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in some open interval containing c, except possibly at $x=c$ itself. Suppose also that

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L
$$

Then $\lim _{x \rightarrow C} f(x)=L$.

Figure 2.9, page 82

Example. Page 84 number 52.

Example. Page 85 number 55.

