Chapter 2. Limits and Continuity

2.3 The Precise Definition of a Limit

Definition. Formal Definition of Limit

Let $f(x)$ be defined on an open interval about x_{0}, except possibly at x_{0} itself. We say that $f(x)$ approaches the limit L as x approaches x_{0} and write $\lim _{x \rightarrow x_{0}} f(x)=L$, if, for every number $\epsilon>0$, there exists a corresponding number $\delta>0$ such that for all x,

$$
0<\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-L|<\epsilon
$$

Figure 1.11 from Edition 10, page 93

Example. Prove for $f(x)=m x+b, m \neq 0$, that $\lim _{x \rightarrow a} f(x)=f(a)$.

Examples. Page 92 number 12, page 93 number 20.

Theorem 1. Sum Rule. If

$$
\lim _{x \rightarrow c} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=M, \quad \text { then }
$$

then $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$.

Proof. We wish to prove $\lim _{x \rightarrow c}(f(x)+g(x))=L+M$ under the assumptions $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$. Let $\epsilon>0$ be given. Then $\epsilon / 2>0$ and there exists $\delta_{1}>0$ such that for all x with $0<|x-c|<\delta_{1}$ we have $|f(x)-L|<\epsilon / 2$. Similarly, there exists $\delta_{2}>0$ such that for all x with $0<|x-c|<\delta_{2}$ we have $|g(x)-M|<\epsilon / 2$. Therefore we choose $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$. Then for $0<|x-c|<\delta$ we have

$$
\begin{aligned}
|(f(x)+g(x))-(L+M)| & \leq|(f(x)-L)+(g(x)-M)| \\
& \leq|f(x)-L|+|g(x)-M| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

This proves the result.
Q.E.D.

Example. Page 94 number 58.

