Chapter 2. Limits and Continuity2.4 One-Sided Limits and Limits at Infinity

Definition. Informal Definition of Right-Hand and Left-Hand Limits.

Let f(x) be defined on an interval (a, b), where a < b. If f(x) approaches arbitrarily close to L as x approaches a from within that interval, then we say that f has *right-hand limit* L at a, and write

$$\lim_{x \to a^+} f(x) = L$$

Let f(x) be defined on an interval (c, a), where c < a. If f(x) approaches arbitrarily close to M as x approaches a from within the interval (c, a), then we say that f has *left-hand limit* M at a, and we write

$$\lim_{x \to a^{-}} f(x) = M.$$

Definition. Formal Definitions of One Sided Limits.

We say that f(x) has right-hand limit L at x_0 , and write

$$\lim_{x \to x_0^+} f(x) = L$$

if for every number $\epsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all x

$$x_0 < x < x_0 + \delta \quad \Rightarrow \quad |f(x) - L| < \epsilon.$$

We say that f(x) has *left-hand limit* L at x_0 , and write

$$\lim_{x \to x_0^-} f(x) = L$$

if for every number $\epsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all x

$$x_0 - \delta < x < x_0 \quad \Rightarrow \quad |f(x) - L| < \epsilon.$$

Example. Consider limits as x approaches -1 and +1 for $f(x) = \sqrt{1-x^2}$.

Example. (Example 3 page 98) Prove that $\lim_{x\to 0^+} \sqrt{x} = 0$.

Proof. Let $\epsilon > 0$ be given. We have $x_0 = 0$ and L = 0. Choose $\delta = \epsilon^2$. Then if $0 < x - x_0 = x - 0 = x < \delta = \epsilon^2$, we have $\sqrt{x} < \epsilon$, or $|\sqrt{x} - 0| < \epsilon$, or $|f(x) - L| < \epsilon$. Therefore, the result holds. *QED*

Theorem 6. Relation Between One-Sided and Two-Sided Limits

A function f(x) has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x \to c} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to c^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to c^{+}} f(x) = L.$$

Example. Page 107 number 10.

Example. Page 109 number 70.

Theorem 7.

For θ in radians,

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1.$$

Proof. Suppose first that θ is positive and less than $\pi/2$. Consider the picture:

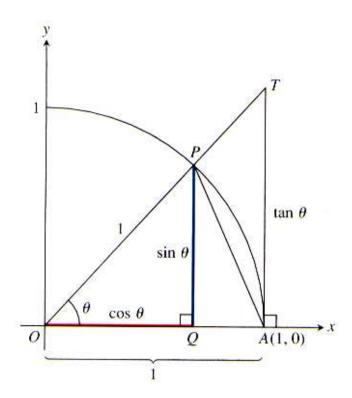


Figure 2.30, page 99

Notice that

Area $\triangle OAP < \text{area sector } OAP < \text{area } \triangle OAT.$

We can express these areas in terms of θ as follows:

Area
$$\triangle OAP = \frac{1}{2}$$
 base \times height $= \frac{1}{2}(1)(\sin \theta) = \frac{1}{2}\sin \theta$
Area sector $OAP = \frac{1}{2}r^2\theta = \frac{1}{2}(1)^2\theta = \frac{\theta}{2}$
Area $\triangle OAT = \frac{1}{2}$ base \times height $= \frac{1}{2}(1)(\tan \theta) = \frac{1}{2}\tan \theta$.

Thus,

$$\frac{1}{2}\sin\theta < \frac{1}{2}\theta < \frac{1}{2}\tan\theta.$$

This last inequality goes the same way if we divide all three terms by the positive number $(1/2)\sin\theta$:

$$1 < \frac{\theta}{\sin \theta} < \frac{1}{\cos \theta}.$$

Taking reciprocals reverses the inequalities:

$$\cos\theta < \frac{\sin\theta}{\theta} < 1.$$

Since $\lim_{\theta \to 0^+} \cos \theta = 1$, the Sandwich Theorem gives

$$\lim_{\theta \to 0^+} \frac{\sin \theta}{\theta} = 1.$$

Since $\sin \theta$ and θ are both odd functions, $f(\theta) = \frac{\sin \theta}{\theta}$ is an even function and hence $\frac{\sin(-\theta)}{-\theta} = \frac{\sin \theta}{\theta}$. Therefore

$$\lim_{\theta \to 0^-} \frac{\sin \theta}{\theta} = 1 = \lim_{\theta \to 0^+} \frac{\sin \theta}{\theta},$$

so
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$
 by Theorem 4. QED

Example. Page 100 example 5a: Show that $\lim_{h \to 0} \frac{\cos h - 1}{h} = 0$.

Solution. We use the trig identity $\cos h = 1 - 2\sin^2(h/2)$ (a half-angle identity). First, we have

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} -\frac{2\sin^2(h/2)}{h}$$

Now, replacing h/2 with θ we get

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} -\frac{2\sin^2(h/2)}{h} = -\lim_{\theta \to 0} \frac{\sin \theta}{\theta} \sin \theta = -(1)(0) = 0.$$

$$QED$$

Definition. Formal Definition of Limits at Infinity.

1. We say that f(x) has the *limit* L as x approaches infinity and we write

$$\lim_{x \to +\infty} f(x) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number M such that for all x

$$x > M \quad \Rightarrow \quad |f(x) - L| < \epsilon.$$

2. We say that f(x) has the *limit* L as x approaches negative infinity and we write

$$\lim_{x \to -\infty} f(x) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number N such that for all x

$$x < N \Rightarrow |f(x) - L| < \epsilon.$$

Example. Page 108 number 34.

Definition. Informal Definition of Limits Involving Infinity.

1. We say that f(x) has the *limit* L as x approaches infinity and write

$$\lim_{x \to +\infty} f(x) = L$$

if, as x moves increasingly far from the origin in the positive direction, f(x) gets arbitrarily close to L.

2. We say that f(x) has the *limit* L as x approaches negative infinity and write

$$\lim_{x \to -\infty} f(x) = L$$

if, as x moves increasingly far from the origin in the negative direction, f(x) gets arbitrarily close to L.

Example. Example 6 page 102. Show that $\lim_{x \to \infty} \frac{1}{x} = 0$.

Solution. Let $\epsilon > 0$ be given. We must find a number M such that for all

$$x > M \quad \Rightarrow \quad \left|\frac{1}{x} - 0\right| = \left|\frac{1}{x}\right| < \epsilon.$$

The implication will hold if $M = 1/\epsilon$ or any larger positive number (see the figure below). This proves $\lim_{x\to\infty} \frac{1}{x} = 0$. We can similarly prove that $\lim_{x\to-\infty} \frac{1}{x} = 0.$ QED

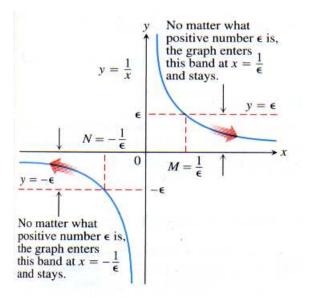


Figure 2.32, page 102

Theorem 8. Rules for Limits as $x \to \pm \infty$.

If L, M, and k are real numbers and

$$\lim_{x \to \pm \infty} f(x) = L \quad \text{and} \quad \lim_{x \to \pm \infty} = M, \quad \text{then}$$

- **1.** Sum Rule: $\lim_{x \to \pm \infty} (f(x) + g(x)) = L + M$
- **2.** Difference Rule: $\lim_{x \to \pm \infty} (f(x) g(x)) = L M$
- **3.** Product Rule: $\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = L \cdot M$
- **4.** Constant Multiple Rule: $\lim_{x \to \pm \infty} (k \cdot f(x)) = k \cdot L$
- **5.** Quotient Rule: $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0$
- **6.** Power Rule: If r and s are integers with no common factors and $s \neq 0$, then

$$\lim_{x \to \pm \infty} (f(x))^{r/s} = L^{r/s}$$

provided that $L^{r/s}$ is a real number **AND** L > 0 when s is even.

Example. Page 108 number 52 and number 48.

Definition. Horizontal Asymptote.

A line y = b is a *horizontal asymptote* of the graph of a function y = f(x) if either

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b$$

Example. Page 118 number 32, find the horizontal asymptotes.

Definition. Oblique Asymptotes.

If the degree of the numerator of a rational function is one greater than the degree of the denominator, the graph has an *oblique asymptote* (or *slant asymptote*). The asymptote is found by dividing the denominator into the numerator to express the function as a linear function plus a remainder that goes to zero as $x \to \pm \infty$.

Example. Page 118 number 36, find the slant asymptotes.

Example. Page 109 number 74.