Chapter 2. Limits and Continuity

2.7 Tangents and Derivatives

Definition. Slope and Tangent Line.

The slope of the curve $y=f(x)$ at the point $P\left(x_{0}, f\left(x_{0}\right)\right)$ is the number

$$
m=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided the limit exists. The tangent line to the curve at P is the line through P with this slope.

Figure 2.71, page 133

Example. Page 136 number 7.

Definition. If $f(t)$ is the position of a particle at time t, then the instantaneous rate of change of position with respect to time (i.e. the instantaneous velocity) is

$$
\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h},
$$

provided the limit exists.

Example. Page 137 number 28.

Example. Page 137 number 24.

