Chapter 3. Differentiation

3.1 The Derivative as a Function

Definition. Derivative Function.

The derivative of the function $f(x)$ with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided the limit exists.

Note. Motivated by Section 2.7, we see that $f^{\prime}(x)$ is the slope of the line tangent to $y=f(x)$ as a function of x.

Note. There are a number of ways to denote the derivative of $y=f(x)$:

$$
f^{\prime}(x)=y^{\prime}=\frac{d f}{d x}=\frac{d y}{d x}=\frac{d}{d x}[f] .
$$

Examples. Example 2(a) page 146, page 153 numbers 16 and 30.

Note. We can also study "one-sided derviatives" at a point defined as follows:

Right-hand derivative at $a: \lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}$
Left-hand derivative at $b: \lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h}$

Example. Page 154 number 38.

Theorem 1. Differentiability Implies Continuity

If f has a derivative at $x=c$, then f is continuous at $x=c$.

Proof. By definition, we need to show that $\lim _{x \rightarrow c} f(x)=f(c)$, or equivalently that $\lim _{h \rightarrow 0} f(c+h)=f(c)$. Then

$$
\begin{aligned}
\lim _{h \rightarrow 0} f(c+h) & =\lim _{h \rightarrow 0}\left(f(c)+\frac{f(c+h)-f(c)}{h} \cdot h\right) \\
& =\lim _{h \rightarrow 0} f(c)+\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \cdot \lim _{h \rightarrow 0} h \\
& =f(c)+f^{\prime}(c) \cdot 0 \\
& =f(c) .
\end{aligned}
$$

Therefore f is continuous at $x=c$.

Example. Page 155 number 44.

Theorem 2. Intermediate Value Property of Derivatives

If a and b are any two points in an interval on which f is differentiable, then f^{\prime} takes on every value between $f^{\prime}(a)$ and $f^{\prime}(b)$.

Example. Page 155 number 52.

