Chapter 3. Differentiation

3.10 Linearization and Differentials

Definition. If f is differentiable at $x=a$, then the approximating function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is the linearization of f at a.

Example. Page 250 number 2.

Definition. Let $y=f(x)$ be a differentiable function. The differential $d x$ is an independent variable. The differential $d y$ is

$$
d y=f^{\prime}(x) d x
$$

Example. Page 251 number 28 and 38.

Note. Differential Estimate of Change.

Let $f(x)$ be differentiable at $x=a$. The approximate change in the value of f when x changes from a to $a+d x$ is

$$
d f=f^{\prime}(a) d x .
$$

Section 3.6, page 294 of Edition 10

Definition. We can compare actual changes in a function and the estimated change which is calculated from the use of differentials. We consider the absolute, relative, and percentage change:

	True	Estimated
Absolute change	$\Delta f=f(a+d x)-f(a)$	$d f=f^{\prime}(a) d x$
Relative change	$\frac{\Delta f}{f(a)}$	$\frac{d f}{f(a)}$
Percentage change	$\frac{\Delta f}{f(a)} \times 100 \%$	$\frac{d f}{f(a)} \times 100 \%$

Example. Page 252 number 56 and 58.

