Chapter 3. Differentiation

3.5 The Chain Rule and Parametric Equations

Theorem 3. The Chain Rule.

If $f(u)$ is differentiable at the point $u=g(x)$ and $g(x)$ is differentiable at x, then the composite function $(f \circ g)(x)=f(g(x))$ is differentiable at x, and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x))\left[g^{\prime}(x)\right] .
$$

In Leibniz's notation, if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x},
$$

where $d y / d u$ is evaluated at $u=g(x)$.

Note. The proof of the Chain Rule is rather complicated - see Section 3.8.

Note. If $f(u)=u^{n}$ where n is an integer, then

$$
\frac{d}{d x}[f(g(x))]=\frac{d}{d x}\left[(g(x))^{n}\right]=n g(x)^{n-1}\left[g^{\prime}(x)\right] .
$$

Examples. Page 199 numbers 8, 43, and 54, page 200 number 64.

Definition. A curve is given parametrically if its graph is determined by graphing $(x(t), y(t))$ for t (the parameter) ranging over some interval.

Example. $x(t)=\cos t, y(t)=\sin t$ for $t \in[0,2 \pi)$ parametrically determine the unit circle $x^{2}+y^{2}=1$.

Note. Parametric Formula for $d y / d x$ and $d^{2} y / d x^{2}$.
If $x=x(t)$ and $y=y(t)$ where $x(t)$ and $y(t)$ are differentiable with $x^{\prime}(t) \neq 0$ then

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \text { and } \frac{d^{2} y}{d x^{2}}=\frac{d y^{\prime} / d t}{d x / d t} .
$$

Examples. Pages 201 number 108, page 202 number 114.

