Chapter 3. Differentiation

3.8. Inverse Trigonometric Functions

Recall. The six inverse trigonometric functions are defined as follows:

1. $y=\cos ^{-1} x$ if and only if $\cos y=x$ and $y \in[0, \pi]$.
2. $y=\sin ^{-1} x$ if and only if $\sin y=x$ and $y \in[-\pi / 2, \pi / 2]$.
3. $y=\tan ^{-1} x$ if and only if $\tan y=x$ and $y \in(-\pi / 2, \pi / 2)$.
4. $y=\sec ^{-1} x$ if and only if $\sec y=x$ and $y \in[0, \pi / 2) \bigcup(\pi / 2, \pi]$.
5. $y=\csc ^{-1} x$ if and only if $\csc y=x$ and $y \in[-\pi / 2,0) \bigcup(0, \pi / 2]$.
6. $y=\cot ^{-1} x$ if and only if $\cot y=x$ and $y \in(0, \pi)$.

For all appropriate x values:

$$
\begin{aligned}
& \sec ^{-1} x=\cos ^{-1}(1 / x) \\
& \csc ^{-1} x=\sin ^{-1}(1 / x) \\
& \cot ^{-1} x=\pi / 2-\tan ^{-1} x
\end{aligned}
$$

Note. The graphs of the six inverse trig functions are:

Figure 3.47 Page 223

Example. Page 230 numbers 4, 14, 28 and 38.

Theorem. We differentiate $\sin ^{-1}$ as follows:

$$
\frac{d}{d x}\left[\sin ^{-1} u\right]=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x}
$$

where $|u|<1$.

Proof. We know that if $y=\sin ^{-1} x$ then (for appropriate domain and range values) $\sin y=x$ and so by implicit differentiation

$$
\begin{aligned}
\frac{d}{d x}[\sin y] & =\frac{d}{d x}[x] \\
\cos y\left[\frac{d y}{d x}\right] & =1 \\
\frac{d y}{d x} & =\frac{1}{\cos y} .
\end{aligned}
$$

Since we have restricted y to the interval $[-\pi / 2, \pi / 2]$, we know that $\cos y \geq 0$ and so $\cos y=+\sqrt{1-(\sin y)^{2}}=\sqrt{1-x^{2}}$. Making this substitution we get

$$
\frac{d}{d x}\left[\sin ^{-1} x\right]=\frac{1}{\sqrt{1-x^{2}}}
$$

The theorem then follows from the Chain Rule.
Q.E.D.

Example. Page 231 number 58.

Theorem. We differentiate $\tan ^{-1}$ as follows:

$$
\frac{d}{d x}\left[\tan ^{-1} u\right]=\frac{1}{1+u^{2}}\left[\frac{d u}{d x}\right]
$$

Proof. We know that if $y=\tan ^{-1} x$ then (for appropriate domain and range values) $\tan y=x$ and so by implicit differentiation

$$
\begin{aligned}
\frac{d}{d x}[\tan y] & =\frac{d}{d x}[x] \\
\sec ^{2} y\left[\frac{d y}{d x}\right] & =1 \\
\frac{d y}{d x} & =\frac{1}{\sec ^{2} y} \\
& =\frac{1}{1+(\tan y)^{2}} \\
& =\frac{1}{1+x^{2}} .
\end{aligned}
$$

The theorem then follows from the Chain Rule.
Q.E.D.

Example. Page 231 number 62.

Theorem. We differentiate sec^{-1} as follows:

$$
\frac{d}{d x}\left[\sec ^{-1} u\right]=\frac{1}{|u| \sqrt{u^{2}-1}} \frac{d u}{d x}
$$

where $|u|>1$.
Proof. We know that if $y=\sec ^{-1} x$ then (for appropriate domain and range values) sec $y=x$ and so by implicit differentiation

$$
\begin{aligned}
\frac{d}{d x}[\sec y] & =\frac{d}{d x}[x] \\
\sec y \tan y\left[\frac{d y}{d x}\right] & =1 \\
\frac{d y}{d x} & =\frac{1}{\sec y \tan y} .
\end{aligned}
$$

We now need to express this last expression in terms of x. First, sec $y=x$ and $\tan y= \pm \sqrt{\sec ^{2} y-1}= \pm \sqrt{x^{2}-1}$. Therefore we have

$$
\frac{d}{d x}\left[\sec ^{-1}\right]= \pm \frac{1}{x \sqrt{x^{2}-1}}
$$

Notice from the graph of $y=\sec ^{-1} x$ above, that the slope of this function is positive where ever it is defined. So

$$
\frac{d}{d x}\left[\sec ^{-1} x\right]= \begin{cases}+\frac{1}{x \sqrt{x^{2}-1}} & \text { if } x>1 \\ -\frac{1}{x \sqrt{x^{2}-1}} & \text { if } x<-1\end{cases}
$$

Notice that if $x>1$ then $x=|x|$ and if $x<-1$ then $-x=|x|$. Therefore

$$
\frac{d}{d x}\left[\sec ^{-1} x\right]=\frac{1}{|x| \sqrt{x^{2}-1}}
$$

Note. We can use the following identities to differentiate the other three inverse trig functions:

$$
\begin{aligned}
& \cos ^{-1} x=\pi 2-\sin ^{-1} x \\
& \cot ^{-1} x=\pi / 2-\tan ^{-1} x \\
& \csc ^{-1} x=\pi / 2-\sec ^{-1} x
\end{aligned}
$$

We then see that the only difference in the derivative of an inverse trig function and the derivative of the inverse of its cofunction is a negative sign. In summary, that is (Table 3.1 page 229):

1. $\frac{d}{d x}\left[\sin ^{-1} u\right]=\frac{d u / d x}{\sqrt{1-u^{2}}},|u|<1$
2. $\frac{d}{d x}\left[\cos ^{-1} u\right]=-\frac{d u / d x}{\sqrt{1-u^{2}}},|u|<1$
3. $\frac{d}{d x}\left[\tan ^{-1} u\right]=\frac{d u / d x}{1+u^{2}}$
4. $\frac{d}{d x}\left[\cot ^{-1} u\right]=-\frac{d u / d x}{1+u^{2}}$
5. $\frac{d}{d x}\left[\sec ^{-1} u\right]=\frac{d u / d x}{|u| \sqrt{u^{2}-1}},|u|>1$
6. $\frac{d}{d x}\left[\csc ^{-1} u\right]=\frac{-d u / d x}{|u| \sqrt{u^{2}-1}},|u|<1$

Example. Page 231 numbers 60 and 90 .

