Chapter 4. Applications of Derivatives 4.1 Extreme Values of Functions

Definition. Let f be a function with domain D. Then $f(c)$ is the
(a) absolute maximum value on D if and only if $f(x) \leq f(c)$ for all x in D
(b) absolute minimum value on D if and only if $f(x) \geq f(c)$ for all x in D.

Theorem 1.The Extreme-Value Theorem for Continuous Functions

If f is continuous at every point of a closed and bounded interval $I=[a, b]$, then f assumes both an absolute maximum value M and an absolute minimum value m somewhere in I. That is, there are numbers x_{1} and x_{2} in $I=[a, b]$ with $f\left(x_{1}\right)=m, f\left(x_{2}\right)=M$, and $m \leq f(x) \leq M$ for every x in $I=[a, b]$.

Examples. Page 272 numbers 2 and 4.

Definition. Let c be an interior point of the domain of the function f. Then $f(c)$ is a
(a) local maximum value if and only if $f(x) \leq f(c)$ for all x in some open interval containing c
(b) local minimum value if and only if $f(x) \geq f(c)$ for all x in some open interval containing c.

Theorem 2. Local Extreme Values.

If a function f has a local maximum value or a local minimum value at an interior point c of its domain, and if f^{\prime} exists at c, then $f^{\prime}(c)=0$.

Definition. A point in the domain of a function f at which $f^{\prime}=0$ or f^{\prime} does not exist is a critical point of f.

Note. How to Find the Absolute Extrema of a Continuous Function f on a Closed Interval

To find extrema on a closed and bounded interval, we first find the critical points and then:

Step 1. Evaluate f at all critical points and endpoints.

Step 2. Take the largest and smallest of these values.

Examples. Page 273 numbers 18, and 54, page 274 numbers 58 and 76.

