Chapter 4. Applications of Derivatives

4.1 Extreme Values of Functions

Definition. Let f be a function with domain D. Then f(c) is the

- (a) absolute maximum value on D if and only if $f(x) \leq f(c)$ for all x in D
- (b) absolute minimum value on D if and only if $f(x) \ge f(c)$ for all x in D.

Theorem 1. The Extreme-Value Theorem for Continuous Functions

If f is continuous at every point of a closed and bounded interval I = [a, b], then f assumes both an absolute maximum value M and an absolute minimum value m somewhere in I. That is, there are numbers x_1 and x_2 in I = [a, b] with $f(x_1) = m$, $f(x_2) = M$, and $m \le f(x) \le M$ for every x in I = [a, b].

Examples. Page 272 numbers 2 and 4.

Definition. Let c be an interior point of the domain of the function f. Then f(c) is a

- (a) local maximum value if and only if $f(x) \leq f(c)$ for all x in some open interval containing c
- (b) local minimum value if and only if $f(x) \ge f(c)$ for all x in some open interval containing c.

Theorem 2. Local Extreme Values.

If a function f has a local maximum value or a local minimum value at an interior point c of its domain, and if f' exists at c, then f'(c) = 0.

Definition. A point in the domain of a function f at which f' = 0 or f' does not exist is a *critical point* of f.

Note. How to Find the Absolute Extrema of a Continuous Function f on a Closed Interval

To find extrema on a closed and bounded interval, we first find the critical points and then:

Step 1. Evaluate f at all critical points and endpoints.

Step 2. Take the largest and smallest of these values.

Examples. Page 273 numbers 18, and 54, page 274 numbers 58 and 76.