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Chapter 4. Applications of Derivatives
4.2 The Mean Value Theorem

Theorem 3. Rolle’s Theorem.
Suppose that y = f(z) is continuous at every point of [a, b] and differen-
tiable at every point of (a,b). If f(a) = f(b) = 0, then there is at least

one number ¢ in (a, b) at which f'(c) = 0.

Proof. Since f is continuous by hypothesis, f assumes an absolute max-
imum and minimum for € [a,b] by Theorem 1 (the Extreme Value

Theorem). These extrema occur only

1. at interior points where f’is zero
2. at interior points where f’ does not exist

3. at the endpoints of the function’s domain, a and b.

Since we have hypothesized that f is differentiable on (a, b), then Option
2 18 not possible.

In the event of Option 1, the point at which an extreme occurs, say
¢, must satisfy f’(¢) = 0 by Theorem 2 of Section 3.1 (Local Extreme
Values). Therefore the theorem holds.
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In the event of Option 3, the maximum and minimum occur at the end-
points a and b (where f is 0) and so f must be a constant of 0 throughout
the interval. Therefore f'(x) = 0 for all x € (a,b), by Rule 1 page 156,
and the theorem holds. QED

Example. Page 284 number 54.

Theorem 4. The Mean Value Theorem
Suppose that y = f(x) is continuous on a closed interval [a, b] and differ-

entiable on the interval (a,b). Then there is at least one point ¢ € (a, b)

such that
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Figure 4.14, page 277
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Examples. Page 282 number 2, page 284 numbers 46 and 59.

Corollary 1. Functions with Zero Derivatives Are Constant
Functions.
If f'(x) = 0 at each point of an interval I, then f(z) =k for all x € I,

where k is a constant.

Note. Corollary 1 is the converse of Rule 1 from page 149.

Corollary 2. Functions with the Same Derivative Differ by
a Constant
If f'(z) = ¢'(x) at each point of an interval (a,b), then there exists a

constant k such that f(x) = g(z) + k for all z € (a, D).

Proof. Consider the function h(z) = f(z)—g(x). Under our hypothesis,
h(x) is constant on I and so h'(z) = 0 for all x € (a,b). So by Corollary
1, h(x) = k in I. Therefore f(z) — g(x) = k and f(x) = g(x) + k. QED

Example. Page 283 number 34.
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Theorem. The following Properties of Logarithms are stated on
page 52. We now use calculus to justify these properties. For any numbers

a > 0 and z > 0 we have

1.Inaz =Ina+Inzx

a

2.In—=Ilna—Inzx
€T
1

3. In—=—Inx
€T

4. Inx" = rInx where r is rational.

Proof. First for 1. Notice that

dx Hat - axdr @ _axa_x'

This is the same as the derivative of Inz. Therefore by Corollary 2 to
the Mean Value Theorem, In ax and In x differ by a constant, say Inax =
In 2+ k; for some constant k1. By settingxz = 1 weneedlna =Inl+k) =
0+ k1 = ky. Therefore k& = Ina and we have the identity Inax =
Ina+Inz.

Now for 2. We know by 1:

lnlJrlnx:ln (lx> =Inl=0.
T T
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Therefore In — = —Inz. Again by 1 we have
x
1
hrlg =In (al> =lna+In—=Ina—Inz.
x x x

Finally for 4. We have by the Chain Rule (in the form of the previous

theorem):
1 1 1 d d
% Inz"] = ﬁ% [z"] = ﬁnaz”_l =n_=n_ Inzx| = o nInzx].

As in the proof of 1, since In 2" and nlnax have the same derivative, we
have In 2" = nlnx + ks for some ko. With x = 1 we see that ks = 0 and

we have Inz" =nlnz. Q.E.D.

Theorem. For all numbers x, z1, and x5, the natural exponential e*

obeys the following laws:

1. e*l. "2 = pP11e2

1
_l’ -
2. e " = _e‘”
xr1
e
3. s e

Note. The proofs are based on the definition of y = e* in terms of

x = Iny and properties of the natural logarithm function.



