Chapter 4. Applications of Derivatives 4.2 The Mean Value Theorem

Theorem 3. Rolle's Theorem.

Suppose that $y=f(x)$ is continuous at every point of $[a, b]$ and differentiable at every point of (a, b). If $f(a)=f(b)=0$, then there is at least one number c in (a, b) at which $f^{\prime}(c)=0$.

Proof. Since f is continuous by hypothesis, f assumes an absolute maximum and minimum for $x \in[a, b]$ by Theorem 1 (the Extreme Value Theorem). These extrema occur only

1. at interior points where f^{\prime} is zero
2. at interior points where f^{\prime} does not exist
3. at the endpoints of the function's domain, a and b.

Since we have hypothesized that f is differentiable on (a, b), then Option 2 is not possible.

In the event of Option 1, the point at which an extreme occurs, say c, must satisfy $f^{\prime}(c)=0$ by Theorem 2 of Section 3.1 (Local Extreme Values). Therefore the theorem holds.

In the event of Option 3, the maximum and minimum occur at the endpoints a and b (where f is 0) and so f must be a constant of 0 throughout the interval. Therefore $f^{\prime}(x)=0$ for all $x \in(a, b)$, by Rule 1 page 156 , and the theorem holds.

Example. Page 284 number 54.

Theorem 4. The Mean Value Theorem

Suppose that $y=f(x)$ is continuous on a closed interval $[a, b]$ and differentiable on the interval (a, b). Then there is at least one point $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} .
$$

Figure 4.14, page 277

Examples. Page 282 number 2, page 284 numbers 46 and 59.

Corollary 1. Functions with Zero Derivatives Are Constant Functions.

If $f^{\prime}(x)=0$ at each point of an interval I, then $f(x)=k$ for all $x \in I$, where k is a constant.

Note. Corollary 1 is the converse of Rule 1 from page 149.

Corollary 2. Functions with the Same Derivative Differ by a Constant

If $f^{\prime}(x)=g^{\prime}(x)$ at each point of an interval (a, b), then there exists a constant k such that $f(x)=g(x)+k$ for all $x \in(a, b)$.

Proof. Consider the function $h(x)=f(x)-g(x)$. Under our hypothesis, $h(x)$ is constant on I and so $h^{\prime}(x)=0$ for all $x \in(a, b)$. So by Corollary $1, h(x)=k$ in I. Therefore $f(x)-g(x)=k$ and $f(x)=g(x)+k . Q E D$

Example. Page 283 number 34.

Theorem. The following Properties of Logarithms are stated on page 52 . We now use calculus to justify these properties. For any numbers $a>0$ and $x>0$ we have

1. $\ln a x=\ln a+\ln x$
2. $\ln \frac{a}{x}=\ln a-\ln x$
3. $\ln \frac{1}{x}=-\ln x$
4. $\ln x^{r}=r \ln x$ where r is rational.

Proof. First for 1. Notice that

$$
\frac{d}{d x}[\ln a x]=\frac{1}{a x} \frac{d}{d x}[a x]=\frac{1}{a x} a=\frac{1}{x} .
$$

This is the same as the derivative of $\ln x$. Therefore by Corollary 2 to the Mean Value Theorem, $\ln a x$ and $\ln x$ differ by a constant, say $\ln a x=$ $\ln x+k_{1}$ for some constant k_{1}. By setting $x=1$ we need $\ln a=\ln 1+k_{1}=$ $0+k_{1}=k_{1}$. Therefore $k_{1}=\ln a$ and we have the identity $\ln a x=$ $\ln a+\ln x$.

Now for $\mathbf{2}$. We know by $\mathbf{1}$:

$$
\ln \frac{1}{x}+\ln x=\ln \left(\frac{1}{x} x\right)=\ln 1=0
$$

Therefore $\ln \frac{1}{x}=-\ln x$. Again by $\mathbf{1}$ we have

$$
\ln \frac{a}{x}=\ln \left(a \frac{1}{x}\right)=\ln a+\ln \frac{1}{x}=\ln a-\ln x .
$$

Finally for $\mathbf{4}$. We have by the Chain Rule (in the form of the previous theorem):

$$
\frac{d}{d x}\left[\ln x^{n}\right]=\frac{1}{x^{n}} \frac{d}{d x}\left[x^{n}\right]=\frac{1}{x^{n}} n x^{n-1}=n \frac{1}{x}=n \frac{d}{d x}[\ln x]=\frac{d}{d x}[n \ln x] .
$$

As in the proof of $\mathbf{1}$, since $\ln x^{n}$ and $n \ln x$ have the same derivative, we have $\ln x^{n}=n \ln x+k_{2}$ for some k_{2}. With $x=1$ we see that $k_{2}=0$ and we have $\ln x^{n}=n \ln x$.

Theorem. For all numbers x, x_{1}, and x_{2}, the natural exponential e^{x} obeys the following laws:

1. $e^{x_{1}} \cdot e^{x_{2}}=e^{x_{1}+x_{2}}$.
2. $e^{-x}=\frac{1}{e^{x}}$
3. $\frac{e^{x_{1}}}{e^{x_{2}}}=e^{x_{1}-x_{2}}$
4. $\left(e^{x_{1}}\right)^{x_{2}}=e^{x_{1} x_{2}}=\left(e^{x_{2}}\right)^{x_{1}}$

Note. The proofs are based on the definition of $y=e^{x}$ in terms of $x=\ln y$ and properties of the natural logarithm function.

