Chapter 4. Applications of Derivatives **4.6** Indeterminate Forms and L'Hôpital's Rule **Definition.** We say that $\lim_{x\to a} \frac{f(x)}{g(x)}$ is in

1. 0/0 indeterminate form if

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0,$$

2. ∞/∞ indeterminate form if

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty,$$

The following theorem allows us to deal with the 0/0 indeterminate form.

Theorem 6. L'Hôpital's Rule (First Form). Suppose that f(a) = g(a) = 0, that f'(a) and g'(a) exists, and that $g'(a) \neq 0$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$$

Proof. We have

$$\frac{f'(a)}{g'(a)} = \frac{\lim_{x \to a} \frac{f(x) - f(a)}{x - a}}{\lim_{x \to a} \frac{g(x) - g(a)}{x - a}} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}}$$
$$= \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{f(x) - 0}{g(x) - 0} = \lim_{x \to a} \frac{f(x)}{g(x)}.$$
QED

Example. Use L'Hôpital's Rule to evaluate $\lim_{x \to 0} \frac{\sin x}{x} = 1$ and $\lim_{x \to 0} \frac{1 - \cos x}{x}$.

Theorem 7. L'Hôpital's Rule (Stronger Form). Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

assuming that the limit on the right side exists.

Proof. See page 319. QED

Example. Page 323 number 16.

Note. L'Hôpital's Rule also applies to ∞/∞ indeterminate forms. In fact, we can often convert $\infty - \infty$ and $0 \times \infty$ forms into 0/0 or ∞/∞ forms. The rule also applies to one-sided limits which satisfy the appropriate hypotheses.

Example. Page 323 number 38 and 46, page 324 number 66a.

Theorem. If $\lim_{x \to a} \ln f(x) = L$ then

$$\lim_{x \to a} f(x) = \lim_{x \to a} e^{\ln f(x)} = e^L.$$

Here, a may be finite or infinite.

Note. The proof of the previous theorem follows from the continuity of the exponential function at every real number. This result allows us to extend L'Hopital's Rule to indeterminate forms 1^{∞} , 0^{0} , and ∞^{0} .

Example. Page 323 numbers 48 and 54.