Chapter 4. Applications of Derivatives 4.8 Antiderivatives

Definition. A function $F(x)$ is an antiderivative of a function $f(x)$ if $F^{\prime}(x)=f(x)$ for all x in the domain of f. The most general antiderivative (which is really the set of all antiderivatives) of f is the indefinite integral of f with respect to x, denoted by $\int f(x) d x$. The symbol \int is an integral sign. The function f is the integrand of the integral, and x is the variable of integration.

Note. We denote the indefinite integral (set) as

$$
\int f(x) d x=F(x)+C
$$

where F is a specific antiderivative and C represents an "arbitrary constant." (In class, we will use " k " for a specific constant.)

Note. In terms of the notation of indefinite integrals, we have (Table 4.2):

Indefinite Integral

Derivative Formula

1. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1, n$ rational $\quad \frac{d}{d x}\left[\frac{x^{n+1}}{n+1}\right]=x^{n}$

$$
\int d x=\int 1 d x=x+C \text { (special case) } \quad \frac{d}{d x}[x]=1
$$

2. $\int \sin k x d x=-\frac{\cos k x}{k}+C$
$\frac{d}{d x}\left[-\frac{\cos k x}{k}\right]=\sin k x$
3. $\int \cos k x d x=\frac{\sin k x}{k}+C$
$\frac{d}{d x}\left[\frac{\sin k x}{k}\right]=\cos k x$
4. $\int \sec ^{2} x d x=\tan x+C$
$\frac{d}{d x}[\tan x]=\sec ^{2} x$
5. $\int \csc ^{2} x d x=-\cot x+C$
$\frac{d}{d x}[-\cot x]=\csc ^{2} x$
6. $\int \sec x \tan x d x=\sec x+C$
$\frac{d}{d x}[\sec x]=\sec x \tan x$
7. $\int \csc x \cot x d x=-\csc x+C$
$\frac{d}{d x}[-\csc x]=\csc x \cot x$
8. $\int e^{k x} d x=\frac{1}{k} e^{k x}+C$

$$
\frac{d}{d x}\left[\frac{1}{k} e^{k x}\right]=e^{k x}
$$

9. $\int \frac{1}{x} d x=\ln |x|+C, x \neq 0$
$\frac{d}{d x}[\ln x]=\frac{1}{x}$
10. $\int \frac{1}{\sqrt{1-k^{2} x^{2}}} d x=\frac{1}{k} \sin ^{-1} k x+C$
$\frac{d}{d x}\left[\frac{1}{k} \sin ^{-1} k x\right]=\frac{1}{\sqrt{1-k^{2} x^{2}}}$
11. $\int \frac{1}{1+k^{2} x^{2}} d x=\frac{1}{k} \tan ^{-1} k x+C$
$\frac{d}{d x}\left[\frac{1}{k} \tan ^{-1} k x\right]=\frac{1}{1+k^{2} x^{2}}$
12. $\int \frac{1}{x \sqrt{k^{2} x^{2}-1}} d x=\sec ^{-1} x+C, k x>1 \quad \frac{d}{d x}\left[\sec ^{-1} k x\right]=\frac{1}{x \sqrt{k^{2} x^{2}-1}}$
13. $\int a^{k x} d x=\left(\frac{1}{k \ln a}\right) a^{k x}+C, a>0, a \neq 1 \quad \frac{d}{d x}\left[a^{k x}\right]=a^{k x} \ln a$

Note. Based on the properties of differentiation, we have the following "linearity rules" for indefinite integrals. Suppose F is an antiderivative of f, G is an antiderivative of g, and k is a constant.

1. Constant Multiple rule: $\int k f(x) d x=k \int f(x) d x=k F(x)+C$.
2. Negative Rule: $-f(x) d x=-\int f(x) d x=-F(x)+C$.
3. Sum or Difference Rule: $\int f(x) \pm g(x) d x=\int f(x) d x \pm \int G(x) d x=$

$$
F(x) \pm G(x)+C .
$$

Examples. Page 338 number 32 and 54, page 339 number 66.

Definition. A differential equation is an equation relating an unknown function y of x and one or more of its derivatives. A function whose derivatives satisfy a differential equation is called a solution of the differential equation and the set of all solutions is called the general solution. The problem of finding a specific function y of x which is a solution to a differential equation and satisfies certain initial condition(s) of the form $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$, etc., is called an initial value problem.

Examples. Page 341 numbers 114, 118, and 100.

