Chapter 5. Integration

5.2 Sigma Notation and Limits of Finite Sums

Note. We use the sigma notation to denote sums:

$$
\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n}
$$

Examples. Page 369 number 2, page 370 number 18.

Note. We can verify (by mathematical induction):

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2} .
$$

Examples. Page 370 number 24 and 28.

Definition. A partition of the interval $[a, b]$ is a set

$$
P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \text { where } a=x_{0}<x_{1}<\cdots<x_{n}=b .
$$

partition P determines n closed subintervals

$$
\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right] .
$$

The length of the k th subinterval is $\Delta x_{k}=x_{k}-x_{k-1}$.

Note. We now estimate the area bounded between a function $y=f(x)$ and the x-axis. We make the convention that the area bounded above the x-axis and below the function is positive, and the area bounded below the x-axis and above the curve is negative. We estimate this "area" by choosing a $c_{k} \in\left[x_{k-1}, x_{k}\right]$ and we use $f\left(c_{k}\right)$ as the "height" of a rectangle with base $\left[x_{k-1}, x_{k}\right]$. Then a partition P of $[a, b]$ can be used to estimate this "area" by adding up the "area" of these rectangles.

Figure 5.9, page 368

Definition. With the above notation, a Riemann sum of f on the interval $[a, b]$ is a sum of the form

$$
s_{n}=\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x_{k} .
$$

Example. Page 370 number 30.

Definition. The norm of a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of interval [$a, b]$, denoted $\|P\|$, is largest subinterval:

$$
\|P\|=\max _{1 \leq k \leq n} \Delta x_{k}=\max _{1 \leq k \leq n}\left(x_{k}-x_{k-1}\right) .
$$

Note. If $\|P\|$ is "small," then a Riemann sum is a "good" approximation of the "area" described above.

