Chapter 5. Integration

5.4 The Fundamental Theorem of Calculus

Theorem 3. The Mean Value Theorem for Definite Integrals.
If f is continuous on $[a, b]$, then at some point c in $[a, b]$,

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Figure 5.16, page 383

Proof of Theorem 3. By the Max-Min Inequality from Section 5.3,

 we have$$
\min f \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \max f .
$$

Since f is continuous, f must assume any value between $\min f$ and $\max f$, including $\frac{1}{b-a} \int_{a}^{b} f(x) d x$ by the Intermediate Value Theorem. Q.E.D.

Theorem 4. The Fundamental Theorem of Calculus, Part 1.

If f is continuous on $[a, b]$ then the function

$$
F(x)=\int_{a}^{x} f(t) d t
$$

has a derivative at every point x in $[a, b]$ and

$$
\frac{d F}{d x}=\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x) .
$$

Proof. Notice that

$$
F(x+h)-F(x)=\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t=\int_{x}^{x+h} f(t) d t
$$

So

$$
\frac{F(x+h)-F(x)}{h}=\frac{1}{h}[F(x+h)-F(x)]=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

Since f is continuous, Theorem 2 implies that for some $c \in[x, x+h]$ we have

$$
f(c)=\frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

Since $c \in[x, x+h]$, then $\lim _{h \rightarrow 0} f(c)=f(x)$ (since f is continuous at x). Therefore

$$
\begin{aligned}
\frac{d F}{d x} & =\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t \\
& =\lim _{h \rightarrow 0} f(c)=f(x)
\end{aligned}
$$

Q.E.D.

Example. Page 392 numbers 42 and 44.

Theorem 4. The Fundamental Theorem of Calculus, Part 2.

If f is continuous at every point of $[a, b]$ and if F is any antiderivative of f on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

Proof. We know from the first part of the Fundamental Theorem (Theorem 3a) that

$$
G(x)=\int_{a}^{x} f(t) d t
$$

defines an antiderivative of f. Therefore if F is any antiderivative of f, then $F(x)=G(x)+k$ for some constant k. Therefore

$$
\begin{aligned}
F(b)-F(a) & =[G(b)+k]-[G(a)+k] \\
& =G(b)-G(a) \\
& =\int_{a}^{b} f(t) d t-\int_{a}^{a} f(t) d t \\
& =\int_{a}^{b} f(t) d t-0 \\
& =\int_{a}^{b} f(t) d t
\end{aligned}
$$

Examples. Page 392 numbers 16 and 60.
Example. Find the linearization of $g(x)=3+\int_{1}^{x^{2}} \sec (t-1) d t$ at $a=-1$.

