Chapter 5. Integration

5.5 Indefinite Integrals and the Substitution Rule

Note. Suppose we denote a function f(x) as u: u = f(x). Then, for n a rational number, $n \neq -1$, by the Power Rule and Chain Rule for differentiation, $\frac{d}{dx} \left[\frac{u^{n+1}}{n+1} \right] = \frac{d}{dx} \left[\frac{(f(x))^{n+1}}{n+1} \right] = (f(x))^n f'(x)$. As an indefinite integral, we can write this as $\int (f(x))^n f'(x) \, dx = \frac{(f(x))^{n+1}}{n+1} + C$. Since the differential of u is $du = f'(x) \, du$, we write $\int u^n \, du = \frac{u^{n+1}}{n+1} + C$.

Example. Page 402 number 18.

Theorem 5. The Substitution Rule. If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then

$$\int f(g(x))g'(x)\,dx = \int f(u)\,du$$

Proof. This can be established by the Chain Rule. *QED*

Examples. Page 403 numbers 44 and 48. Page 400 Example 9, page 403 numbers 60 and 68.